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ABSTRACT

Recent work has established the utility of waveform sampling lidar for predicting forest structural attributes.  Nevertheless, serious
obstacles to its wide-spread use still exist. They include the lack of waveform sampling lidar sensors capable of measuring forest
canopy structure over large extents, and the practical difficulty of developing widely applicable relationships to predict forest stand
structure indices (such as aboveground biomass) from measurements of canopy structure. While the advent of advanced devices such
as NASA’s LVIS and VCL sensors will allow the collection of larger datasets than previously possible, neither sensor is capable of
collecting spatially comprehensive datasets at the regional scales critical for forest management. Therefore, methods to integrate data
from these devices with conventional optical remote sensing products such as those from the Landsat Enhanced Thematic Mapper
Plus (Landsat ETM+) sensor will play a critical role in the development of lidar remote sensing. In addition, it will be desirable to
develop methods to facilitate the use of existing forest inventory datasets, which include substantial information on the height of
dominant trees, to interpret lidar measurements of canopy structure. Preliminary results from a new study that incorporates both
approaches (Lidar-ETM+ data fusion, incorporating forest inventory data for the interpretation of lidar data) to accomplish wall-to-
wall mapping of forest structure and composition in Oregon and Washington suggest that these approaches are feasible, and that they
will lead to more accurate maps of forest structure and composition.

1. INTRODUCTION

Lidar Remote Sensing

A variety of height-measuring remote sensing technologies are
currently in development through NASA and other government
and commercial remote sensing programs. These include small
footprint laser altimeters, large footprint waveform digitizing
lidar sensors (such as SLICER, Scanning Lidar Imager of
Canopies by Echo Recovery, Harding et al., 1995; LVIS and
VCL, Laser Vegetation Imaging Sensor and Vegetation Canopy
Lidar, Dubayah, 1997), and inteferrometric SAR (Synthetic
Aperture Radar) devices. These sensors have considerable
advantages over traditional optical or radar remote sensing
systems for the description of forested ecosystems.  In
particular, it has been demonstrated that laser altimetry and lidar
systems (referred to here collectively as lidar sensors) are able
to predict biophysical parameters, such as leaf area index (LAI)
and aboveground biomass, with very high accuracy and without
the asymptotic effect noted with other sensors (Lefsky et al.
1999a, Lefsky et al. 1999b). Recognizing the great potential
utility of newer laser devices, NASA recently funded an Earth
System Sciences Pathfinder satellite lidar mission—VCL. VCL,
with a planned launch date of 2000, will obtain measurements
from approximately 5% of the global land surface. This dataset,
and similar datasets likely to follow, will greatly enhance our
ability to map and monitor global forest ecosystems.  The
ETM+LIFE (Enhanced Thematic Mapper Plus Lidar for Forest
Ecosystems) project is funded by NASA to address the

challenges is using data from VCL for regional-scale mapping
of forest structure.

Key Challenges in Regional Application of Lidar Remote
Sensing

Despite the advantages that lidar remote sensing devices have
for measuring forest structure, there are two key challenges in
its widespread use for regional-scale forest mapping. First, there
is a lack of documented relationships between the elements of
forest canopy structure measured by lidar sensors, and the
measurements that forest managers and researchers need;
measurements such as stem basal area and volume, aboveground
biomass, and leaf area index. The second challenge is the lack of
systems for collecting spatially comprehensive, regional-scale
lidar datasets. Until both of these challenges are addressed,
forest inventory using lidar remote sensing will be severely
limited.

Predicting Forest Structure

From our experience with lidar sensors, and the existing
literature, we expect that it will, ultimately, be possible to use
data from VCL to create a very accurate, spatially detailed  (but
not comprehensive) global dataset of forest stand structure
attributes, including estimates of aboveground biomass and LAI.
Such a database will be directly useful for global climate and
carbon balance investigators. However, a substantial challenge
in using VCL data will be the lack of documented relationships
between lidar measurements of canopy structure and the forest
structure attributes of interest. To develop these relationships,



existing studies with these devices have adopted a study design
in which field measurements from a specific locale are directly
compared to coincident remotely sensed data. While this design
has been useful in demonstrating the potential of lidar sensors, it
has numerous drawbacks. By studying a relatively small number
of plots from a restricted area, the accuracy and precision in
predicting forest stand attributes may be overestimated, both by
the small sample size and the relative uniformity of species
composition and environmental conditions over these small
study areas. Studies over larger areas will be necessary to
determine the actual accuracy of predictions of forest stand
attributes using lidar measurements. In particular, differences in
forest composition and productivity are likely to strongly
influence the relationship between lidar-measured height and
aboveground biomass. Given the global coverage of VCL, any
attempt to generate these relationships using coincident field
plots would be extraordinarily expensive.  Moreover, if this kind
of extensive fieldwork effort is undertaken, it should be
preceded by a preliminary analysis of the geographic
distribution of variability in these relationships, to efficiently
distribute field samples. However, no research on this problem
has yet been carried out.  Therefore, now is an auspicious time
to begin addressing this problem, so that when VCL is launched,
guidance on the most effective sampling schemes is available.

An efficient solution to this problem would take advantage of
forest inventory data collected by various regional, national and
international institutions. Using forest inventory data, both stand
and canopy structure attributes can be estimated.  Stand
structure, in this paper, is defined as those indices typically used
to describe the size and development of forest stands, attributes
such as aboveground biomass, basal area, and leaf area index.
Canopy structure refers to measurements of the dimensions of
the forest canopy, such as cover, maximum height and mean
height of dominant and co-dominant trees. Using forest
inventory data, stand structural attributes can be directly
calculated (e.g. basal area), or estimated using allometric
equations (e.g. aboveground biomass). Canopy structure, and
lidar measurements of canopy structure, can be simulated by
models using inventory parameters such as tree height and
crown depth, along with ancillary crown geometry information.
We can then estimate the relationship between stand and canopy
structure. The advantage of such an approach is that the
relationship can be estimated using forest inventory datasets
over broad geographic regions, and validated using a relatively
small number of plots with coincident field and lidar
measurements. The validated relationship can be applied to lidar
measurements from anywhere within the boundary of the
original forest inventory dataset. The large dataset of forest
inventory plots can be used to estimate and incorporate the
influence of topography, soils, and climate on the relationships
between canopy and forest stand structure attributes.

Fusion of lidar and conventional optical remote sensing

The second major challenge in the use of lidar data for regional
forest mapping applications is the lack of spatially
comprehensive datasets. VCL will collect data in one waveform
wide transects over 5% of the Earth’s land surface, but will not

collect spatially comprehensive data in any one place. LVIS is
capable of collected spatially comprehensive data, but its swath
width is limited to 1km and the data are not yet generally
available. The advent of commercial lidar systems has greatly
increased the availability of lidar data. Nevertheless, the high
cost and low spatial extent of these data are still prohibitive for
regional-scale mapping applications. While commercial lidar
technology is sure to improve, certain practical limitations will
remain; for instance, the high scan angles associated with truly
wide swath sampling from airborne platforms. We suggest that
the most practical solution for regional forest mapping
applications will involve a sampling approach, with
conventional optical remote sensing serving as a spatial
stratification, and lidar providing a measurement of forest
structure within the spatial units and/or a supplement for field
data collection for interpretation of the spectral data.  This
approach can make the most efficient use of lidar data, by
allowing the conventional optical remote sensing to define
spatial boundaries, a task for which it is more suitable than lidar,
and using the lidar to define forest structure, a task for which it
is most suitable.  While this approach can be implemented using
data from current sensors, increased efficiency will result when
sensors, and sensor platforms, are designed for this type of
sampling.

2. ETM+LIFE
(Enhanced Thematic Mapper Plus Lidar for Forest

Ecosystems)

We are addressing both problems discussed above in the
ETM+LIFE project, for the region of western Oregon and
Washington, USA. ETM+LIFE  has two key objectives

Objective 1. Statistically relate lidar waveforms to ground-
measured forest structural attributes. The purpose of this
objective is to identify which common forest inventory and
ecological variables (e.g., total cover, basal area, mean and
variability in tree size, tree density, aboveground biomass, and
LAI) can be derived from lidar, and to determine the geographic
variability in these relationships.

Objective 2. Develop alternative strategies for characterizing
forest structure and composition over large landscapes using
combined Landsat, lidar, ground, and environmental data.
Because current, and near-term future, lidar sensors will obtain
samples of the global terrestrial biosphere rather than complete
coverage, it is important to devise a means to spatially
extrapolate from these samples to broader geographic regions.

Objective 1. Statistically relate lidar waveforms to ground-
measured forest structural attributes

Rather than directly relate lidar measurements of canopy
structure to coincident field measurements of forest structure,
we are adopting a modeling approach, in which forest inventory
data from throughout the western PNW region are used to
estimate the relationship between lidar measurable height
indices and stand structure attributes such as aboveground
biomass.  Field data taken coincident with lidar are used only



for verification of the models. Lidar remote sensing is an
obvious choice for modeling from forest inventory data because
lidar directly measures the vertical and horizontal variability in
canopy height, which is closely related to two key inventory
parameters, tree height and cover. In fact, forest inventory
measurement of height and lidar measurements of height are
often direct related. In the eastern deciduous forest (Lefsky,
1997) and in the Pacific Northwest (PNW) (Lefsky et al.,
1999b), there is a 1:1 relationship between SLICER and field
estimates of maximum height, and we would expect that this
relationship will hold for all forest types, due to the simple
physical nature of the measurement. However, maximum height
is potentially representative of the height of only a single tree,
and therefore is often not well correlated with stand structural
attributes. In the PNW another important field estimate of
canopy height, mean height of dominant and co-dominant stems,
also has a 1:1 relation with a SLICER measurement, the average
height of waveforms in a plot or stand. As a consequence,
relationships between these two-field measured heights
(maximum height and mean height of dominant and codominant
stems) and forest stand structural attributes can be derived from
field inventory data, and directly compared to relationships
derived from lidar data. However, the robustness of this
relationship is likely due to the fact that the SLICER footprint is
8-12m wide, roughly equal to the crown size of a dominant tree
in the PNW (Cohen et al., 1990). When footprint size exceeds
the mean crown size, the relationship between mean waveform
height and mean height of dominant and co-dominant trees, we

expect, will weaken, and require statistical or physical
modeling.

Preliminary work on the problem of estimating the relationship
between stand height and aboveground biomass suggest that this
approach is viable. A dataset consisting of 7700 field plots has
been assembled from the U.S. Forest Service’s FIA (Forest
Inventory and Analysis) and CVS (Current Vegetation Survey)
programs, and the Bureau of Land Management’s forest
inventory program.  Using allometric equations from the H.J.
Andrews permanent plot program, supplemented with equations
from the BIOPAK library (Means et al., 1994), aboveground
biomass has been estimated for each of the over 700,000
inventoried trees on these plots, and estimates of total
aboveground biomass calculated for each plot. Using an
imputation technique, heights for each tree in the dataset which
did not have a measured height were estimated using a dataset
of trees with measured heights, stratified by DBH, species,
crown class, and environmental conditions.  Two heights were
calculated for each stand, maximum tree height (HMAX) and
the mean height of dominant and co-dominant species (HU).  In
addition, we calculated the values of these variables raised to the
second power (HU2 and HMAX2), their product (HUMAX) ,
the fraction of basal area that was deciduous (DECID_IMP) and
the product of DECID_IMP and HUMAX (DIHUMAX).
Stepwise multiple regression was then used to related these
height indices to the aboveground biomass of each plot. Aspects
of the resulting regression are presented in Figure 1. The height
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Figure 1. Relationship between fitted aboveground biomass, estimated using height indices derived from forest
inventory data, and observed aboveground biomass, for 7700  forest inventory plots from western Oregon and
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(DIHUMAX).  Symbols indicate the 90% of data with the lowest absolute residual values, and the remaining 10%.

Fig. 1. Relationship between fitted aboveground biomass, estimated using height indices derived from forest inventory data, and

observed aboveground biomass, for 7700 forest inventory plots from Western Oregon and Washington. Equation variables

include HMAX (maximum height), HU (mean height of dominant and co-dominant trees), these variables raised to the

second power (HU2 and HMAX2), their product (HUMAX), the fraction of basal area that is deciduous (DECID_IMP) and

the product of DECID_IMP and HUMAX (DIHUMAX). Symbols indicate the 90% of data with the lowest absolute residual

values, and the remaining 10%.



indices explained 65% of the variance in aboveground biomass,
and all 7 indices were found to be statistically significant,
although the HUMAX variable explained most of the variance.

A preliminary analysis of the effect of composition on the
predicted biomass values has been performed, splitting the total
dataset by the species which had the largest contribution to each
plot’s basal area. Species for which less than 100 plots were
available were grouped in two "other" categories, one each for
deciduous and coniferous species. This analysis indicates that a
single height-biomass equation does not apply to all species.
Intercepts and slopes for the resulting equations (relating the all-
species predicted biomass to actual biomass)  are as follows

Species                Intercept        Slope
PICO  24.877 0.726
PSME 13.312 0.95
TSHE 53.287 0.991
PIPO -48.882 1.121
ALRU -19.476 1.111
OTHD  -2.783 1.149
OTHC -11.183 1.178
ABAM  -14.127 1.295
ABCO -68.977 1.36
TSME -26.681 1.482

Analysis of the relatively short-statured lodgepole pine (PICO)
shows that the all-species height-biomass equation
overestimates biomass, resulting in a regression slope of 0.726.
The three most dominant species (Douglas-fir (PSME), western
hemlock (TSHE), and ponderosa pine (PIPO), have, as would be
expected, slopes near 1.0, and intercepts that are small relative

to the range of values in aboveground biomass.  Red alder
(ALRU) and other deciduous species (OTHD) are next with
slopes of 1.111 and 1.149, respectively.  Species such as Pacific
Silver Fir (ABAM), white fir (ABCO) and mountain hemlock
(TSME), have the highest slopes, which appear to be associated
with the high altitude conditions associated with these species.
Most of the species making up the miscellaneous conifer species
(OTHC) are also high altitude species, and they have a similar
slope (1.178).

A preliminary analysis of the applicability of the forest
inventory derived equations to lidar measured heights is
available using data from the H.J. Andrews Experimental Forest
(Lefsky et al., 1999b). Using 22 Douglas fir / western hemlock
plots with coincident field and lidar measurements, we applied a
simplified version of the equation presented in Figure 1
(omitting the deciduous composition variables, and using only
plots dominated by either Douglas-fir or western hemlock) to
lidar measured maximum height and mean height of waveforms.
Figure 2 presents the relationship between aboveground biomass
estimated using the forest inventory derived equation with lidar
measured heights, and that estimated using data measured in
coincident field inventory plots.   The forest inventory equation
explains 73% of variance, and the slope and intercept of a
regression between observed and predicted biomass are 22.8 and
1.037, very close to an identity relationship. As field data from
the 6 study areas (~100 plots) being  measured as part of the
ETM+LIFE  project are processed, further validation of the
inventory based predictions will be performed, for plots
dominated by sitka spruce,  red alder, ponderosa pine and high
altitude sites dominated by Abies.
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In addition, we will be analyzing data for two other Douglas-fir
/ western hemlock study areas (Wind River Canopy Crane and
Flynn Creek), at different points along a productivity gradient.
Preliminary analysis from the forest inventory datasets suggest
that there are 6 broad productivity zones in the PNW, and that
the use of a single equation for predicting aboveground biomass
in Douglas-fir / western hemlock communities could result in as
much as a 30% bias for the most extreme of these zones. This
result will be tested using data from the three Douglas-fir /
western hemlock communities.

The results presented here are dependent on the 1:1 relationship
between SLICER measurements and field measurements of
height. In cases where there is a strong correlation between
SLICER and field measurements of height that do not fall on a
1:1 line, simple regression based corrections could used.
However, to most robustly relate tree-based height
measurements from a variety of forests to lidar data from
sensors with a variety of sampling methods, two steps are
required. First, the geometry of individual tree crowns
(estimated using forest inventory data) must be built into a
three-dimensional model of canopy structure. These types of
individual tree models of the canopy have been successfully
used by Nelson (1997), Li and Strahler (1985), Sun and Ranson
(1995), and Van Pelt and North (1996) for various purposes.
Second, a model that simulates the interaction of a variety of
lidar remote sensing devices with the modeled canopy structure
is needed.  When these two models are completed, we will be
able to undertake analysis using more complex indicators of
height and cover, through direct simulation of lidar waveforms.

In summary, we have preliminary evidence suggesting that it is
possible to use forest inventory data to estimate the relationship
between lidar measurements of canopy structure and forest stand
structure attributes such as aboveground biomass. Overall, tree
based stand height indices explain 65% of variance in
aboveground biomass. This is a positive finding, in that
although this result was expected, it has never been
demonstrated over such a large area. Nevertheless, the amount
of variability in this relationship is much higher than previously
observed in studies that relied on smaller numbers of field plots.
Further research is needed to characterize and reduce this
variability. Species composition appears to be a significant
effect on the relationship between stand heights and
aboveground biomass, as does productivity.

Objective 2. Develop alternative strategies for characterizing
forest structure and composition over regional landscapes
using combined Landsat, lidar, ground, and environmental
data.

We are evaluating three different strategies for integrating lidar
and ETM+ data. Within each region, we are testing two-phase
(double) sampling for stratification to estimate means and
standard errors of structural attributes (e.g., biomass, LAI).
Double sampling will allow us to use the less precise but
spatially comprehensive estimates from ETM+ data (primary
phase) as weighting factors for the more precise but spatially
limited lidar-based estimates (secondary phase). Since the VCL

sensor will provide a systematic sample of the whole terrestrial
biosphere, double sampling is a particularly important statistical
procedure to be tested in this context.

Secondly, we are evaluating the effectiveness of lidar data in
replacing ground data for parameterizing statistical and geo-
statistical models (based on ETM+ imagery) of several
individual forest structure attributes. Collecting ground data to
support extensive remote sensing characterizations of vegetation
is essential, but it is also expensive. Thus, we are interested in
determining how effectively lidar data can be used in lieu of
ground data for characterizations of forest vegetation using
ETM+ data. Several independent, continuous data layers will be
developed, one for each forest attribute of interest. Multi-
temporal ETM+ imagery is being acquired to take advantage of
phenological differences in vegetation.

Finally, we plan to use lidar data to parameterize ETM+
multivariate statistical models that will preserve the multiple-
attribute covariance structure of related ground data. We are in
the processing of evaluating a new multivariate method to
predict forest structure from ETM+ data in combination with
lidar data: the most similar neighbor (MSN) method of Moeur
and Stage (1995). This multivariate method has the advantage of
predicting several forest attributes simultaneously, and
preserving the covariance structure among them. As such, the
multivariate predictions based on ETM+ data are expected to be
more ecologically realistic and retain the range of variability
present in the higher quality lidar data, compared to several
independent univariate models.

Currently, our work is focussed on the second task: determining
the ability of lidar data to replace field data for parameterizing
statistical and geo-statistical models (based on ETM+ imagery)
of individual forest structure attributes. There are several
motivations for this analysis.

Lidar data from the VCL mission will have high reliability
relative to field data, which is prone to human error in the field,
and in subsequent processing.  The data will have excellent
geolocation- which forest inventory datasets often do not.  The
global VCL dataset will be uniform and will cross political and
administrative boundaries. Finally, the data from VCL will
measure the physical canopy, which should be more directly
related to the spectral indices and spatial pattern of ETM+ than
forest structure attributes such as aboveground biomass.  The
use of lidar data may in fact give additional motivation to work
on mechanistic modeling to relate forest structural attributes to
the spectral and spatial qualities of imagery such as ETM+, by
providing widespread estimates of the vertical structure of
canopies which is related to both sets of attributes.

Statistical Fusion of Lidar and TM

Preliminary work on statistical analysis relating lidar and TM is
being performed while we wait for a sufficient dataset of ETM+
data to be collected. In the most basic analysis we used a set of
five Landsat TM images from March, May, June, July, and



August 1992, for a 20 x 20 km area around the Wind River
Canopy Crane, in southern Washington state.  Images were
transformed to the tassled-cap Brightness, Greeness, and
Wetness indices using standard transformation factors (Crist and
Cicone, 1984), and combined to create a single, 15-band image
(5 dates x 3 bands). The SMAP algorithm (Bouman and
Shapiro, 1994) was used to segment the June image into patches
that were relatively uniform in their spectral qualities. Six
transects of SLICER data were collected at the site in a rosette
pattern over the canopy crane, during September, 1995. Four
transects were selected for model generation, the other two were
designated for validation purposes only. Lidar estimates of mean
stand height were calculated for each patch that had coincident
lidar data. For these same patches, average spectral values were
calculated for each of the 15 image bands.  Stepwise multiple
regression was used to predict mean stand height from the
average spectral values of each patch. The resulting regression
explained 71% of variance, and 9 of the 15 bands were found to
be statistically significant.

Examination of a plot of observed versus predicted values
(Figure 3) indicates that the model (generation) points and the
validation points have very similar distributions, although the
correlation coefficient associated with the validation dataset is
smaller (58% vs 71%).  Examination of the residuals from the
validation dataset indicates that approximately 60% of

predictions fall within 5 m of the observed stand height. The
resulting equations can either be applied on a pixel-by-pixel
basis (e.g., Cohen In Review) or can be applied on a patch-by-
patch basis, which preserves their spatial structure. Finally,
provided adequate models between image spectral qualities and
height indices are found, equations relating those indices to
forest stand structure attributes can be applied to the images,
resulting in spatially comprehensive maps of, for instance,
aboveground biomass. An example of one such image is
presented in Figure 4.

3.  CONCLUSION

Our preliminary results suggest that it is feasible to use forest
inventory datasets for estimating the relationships between lidar
remotely sensed height indices and elements of forest structure
such as aboveground biomass. This type of application is likely
to prove valuable for estimating such relationships and their
regional variability, and to supplement datasets of coincident
field measure stand structure and lidar measurements.
Integration of lidar and ETM+ data is likely to be one important
application for VCL data when data from that system become
available.
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