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ABSTRACT

A method of predicting two forest stand structure attributes,

basal area and aboveground biomass, from measurements of forest

vertical structure was developed and tested using field and

remotely sensed canopy structure measurements. Coincident

estimates of the vertical distribution of canopy surface area (the

canopy height profile), and field-measured stand structure

attributes were acquired for two datasets. The chronosequence

dataset consists of 48 plots in stands distributed within 25 miles

of Annapolis, MD, with canopy height profiles measured in the

field using the optical-quadrat method. The stemmap dataset

consists of 75 plots subsetted from a single 32 ha stem-mapped

stand, with measurements of their canopy height profiles made

using the SLICER (Scanning Lidar Imager of Canopies by Echo

Recovery) instrument, an airborne surface lidar system. Four

height indices, maximum, median, mean and quadratic mean canopy

height (QMCH) were calculated from the canopy height profiles.

Regressions between the indices and stand basal area and biomass

were developed using the chronosequence dataset. The regression

equations developed from the chronosequence dataset were then

applied to height indices calculated from the remotely sensed

canopy height profiles from the stemmap dataset, and the ability

of the regression equations to predict the stemmap plot’s stand

structure attributes was then evaluated. The QMCH was found to

explain the most variance in the chronosequence dataset’s stand

structure attributes, and to most accurately predict the values of
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the same attributes in the stemmap dataset. For the chronosequence

dataset, the QMCH predicted 70 % of variance in stand basal area,

and 80 % of variance in aboveground biomass, and remained non-

asymptotic with basal areas up to 50 m2ha-1, and aboveground biomass

values up to 450 Mg*ha-1. When applied to the stemmap dataset, the

regression equations resulted in basal areas that were, on

average, under-estimated by 2.1 m2ha-1, and biomass values were

under-estimated by 16 Mg*ha-1, and explained 37 % and 33 % of

variance, respectively. Differences in the magnitude of the

coefficients of determination were due to the wider range of stand

conditions found in the chronosequence dataset; the standard

deviation of residual values were lower in the stemmap dataset

than on the chronosequence datasets. Stepwise multiple regression

was performed to predict the two stand structure attributes using

the canopy height profile data directly as independent variables,

but they did not improve the accuracy of the estimates over the

height index approach.
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1.0 INTRODUCTION

Most studies of forest development focus on what is commonly

referred to as “stand structure”, the size and number of woody

stems per unit area, and related statistics (Miles 1979, Oliver

and Larson 1996). However, the forest canopy, "the collection of

all leaves, twigs, and branches formed from the combination of all

the crowns in the stand" (Maser 1989), is another functionally and

structurally critical component of the forest. The canopy is

responsible for the majority of material and energy exchanges with

the atmosphere, a critical habitat for forest biota, and a

controlling influence over the micro-climate of the forest

interior.  Increasingly, species vertical position is recognized

as a major determinant of successional status (Wierman and Oliver

1979, Aber 1979, Bicknell 1982, Gulden and Lorimer 1985, Smith

1986, Oliver and Larson 1996), and therefore canopy structure, the

“organization in space and time, including the position, extent,

quantity, type, and connectivity, of the aboveground components of

vegetation” (Parker 1995), plays a dynamic role in forest

development.

Studies of forest development have focused on the size and

number of stems because they are conveniently measured. Study of

forest canopies has been hindered by the difficulty of

characterizing canopy structure (Nadkarni and Parker 1994), and

various methods have been developed to do so from more easily

obtained measurements such as tree diameter distributions (Mawson
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et. al. 1976). A new remote sensing device developed at NASA’s

Goddard Space Flight Center, SLICER (Scanning Lidar Imager of

Canopies by Echo Recovery, Blair et al. 1994, Harding et al.

1994), is able to rapidly measure the vertical distribution of

canopy surface area, through the integration of laser altimetry

and surface lidar (light detection and ranging) techniques.

Laser altimetry is an established technology for obtaining

accurate, high resolution measurements of surface elevations

(Krabill et al. 1984, Bufton et. al. 1991). Laser altimetry is

used to measure the distance between the sensor and the object

sensed through the precise timing of the round-trip return time of

the backscattered reflection of a short duration pulse of laser

light.  The first generation of laser altimeters for remote

sensing of vegetation were designed to record the height to the

first surface intercepted by the laser over a relatively small

sampling area, or footprint, usually less than one meter in

diameter (Arp et al. 1982, Schrier et al. 1984, 1985, Ritchie et

al. 1993, Menenti and Ritchie 1994, Weltz et al. 1994). Returns

from the top surface of the forest canopy were combined with

subsequent measurements of distance to the forest floor, obtained

through gaps in the forest canopy, to infer the height of the

dominant trees. A more technically advanced version of this

approach involves recording, for each individual small footprint,

the distance to the first return from the upper surface of the

vegetation, and to the last return from the ground surface. The

distance between these two measurements is inferred to be the
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vegetation height for each footprint. Measurements made using

these techniques have proved useful for predicting canopy height,

timber volume and forest biomass (Maclean and Krabill 1986, Nelson

et al. 1988a, 1988b, Naesset 1997a & 1997b), species type (Jensen

et al. 1987) , and percent canopy cover (Ritchie et al. 1993, and

Weltz et al. 1994).

The SLICER instrument is one of a new generation of systems

(Aldred and Bonnor 1985, Nilsson 1996) that augment traditional

first-return laser ranging with a surface lidar capability. In

surface lidar, the power of the entire return laser signal is

digitized, resulting in a waveform that records the vertical

distribution of the backscatter of laser illumination from all

canopy elements (foliar and woody) and the ground reflection, at

the wavelength of the transmitted pulse (1064 nm, in the near-

infrared). The use of relatively large footprints (5-15 m) is

designed for the recovery of returns from the top of the canopy

and the ground in the same waveform, while remaining small enough

to be sensitive to the contribution of individual crowns of

eastern deciduous species. Currently, the SLICER system has been

mounted on various aircraft platforms and flown over sites in a

range of footprint number and size configurations. Details of the

technical aspects of SLICER can be found in Blair et al. (1994)

and Harding et al. (1994).

Motivation for work relating forest attributes to lidar

sensed canopy structure has been enhanced by the announcement that

VCL, the Vegetation Canopy Lidar mission, has been funded by
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NASA’s Earth System Science Pathfinder (ESSP) program (Dubayah

1997). Scheduled to be launched in mid 2000, VCL will provide

global coverage of surface LIDAR data similar to that used in this

study, with transects of contiguous 25 meter footprints spaced

every 2 km along the earth’s surface.

1.1 Objectives

This current work is part of a larger effort to verify the

ability of SLICER to accurately measure canopy height profiles

(Lefsky 1997), to relate the canopy height profiles to simple

stand structure attributes (this paper), and to relate changes in

the canopy height profiles from  a 300 year chronosequence to the

processes of stand dynamics (Lefsky 1997). The aims of this paper

are: 1) to determine if estimates of two stand structure

attributes, basal area and aboveground biomass, can be made using

indices derived from field-measured canopy height profiles, 2) to

determine if regression equations developed from field-measured

canopy height profile indices can accurately predict the same two

stand structure attributes when applied to indices derived from

canopy height profiles measured by SLICER, and 3) to determine the

relative power of stepwise multiple regression using the elements

of the CHP, and simple regression using height indices, to predict

basal area and aboveground biomass.

2.0 METHODS AND MATERIALS

2.1 Overview
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Two datasets, stemmap and chronosequence, each consisting of

spatially coincident measurements of canopy and stand structure,

were collected in the coastal plain of Maryland, USA. For both

datasets, two stand structure attributes, basal area and

aboveground biomass, were derived from field measurements of tree

diameter at breast height. The canopy structure of the plots in

both datasets was quantified using the canopy height profile

measurement, the distribution of foliage as a function of height.

The canopy height profiles of plots in the chronosequence data

were measured in the field using the optical point-quadrat method

of Aber (1979). The canopy height profiles of plots in the stemmap

dataset were measured by the SLICER scanning lidar instrument

using a processing algorithm based on the principles of the

optical-quadrat method. Canopy height indices, including maximum,

mean, median, and quadratic mean canopy height (QMCH) were

calculated for plots from both datasets using their associated

canopy height profile measurements. Regressions between canopy

height indices and basal area and aboveground biomass were

developed using the chronosequence dataset. These same regression

equations were then applied to the remotely-sensed height indices

from the stemmap dataset, and the resultant estimates of basal

area and biomass were compared to those measured in the field.

2.2 Data Collection and Pre-processing

2.2.1    Floristics   



9

Data used in this work were collected as part of a larger

project describing the structural, floristic and environmental

development of tulip-poplar stands. The tulip-poplar association

is the most common upland forest association in the coastal plain

and much of the piedmont of mid-Atlantic North America, from the

Carolinas to New Jersey. Though variable in composition, tulip

poplar (Liriodendron tulipifera) occurs at most stages of

succession.  Its life cycle begins with high populations of sweet

gum (Liquidambar styriciflua) or tulip poplar following

agricultural abandonment or timbering; these species persist for

several decades. In mature stands, the canopy is composed of oaks,

hickories, beech and some tulip poplar, with a diverse complement

of mid- and sub-canopy species.  Pines (Pinus virginiana and P.

taeda) are rarely a major component in these forests.

2.2.2    Chronosequence dataset   

The chronosequence dataset consists of 48 plot observations

from stands dispersed within a 25 mile radius of the Smithsonian

Environmental Research Center (SERC), located in Edgewater,

Maryland, USA (Brown and Parker 1994). Stand structure information

for the chronosequence dataset was collected using variable-sized

plots that were scaled roughly to the maximum height of the

canopy; the average plot was 20 m X 50 m. In each plot, the

species and breast-height diameters of all living woody plants

less than or equal to 2 cm in diameter were recorded. These data



10

were used to estimate basal area directly, and to estimate the

aboveground woody biomass of each plot through the use of  an

allometric equation (Table 1). The equation used was that of Monk

et al.(1970), which was developed in a forest of similar

composition:

log10B = 1.9757 + 2.5371 log10DBH      [Eq. 1]

where B is the biomass per stem, in grams, and DBH is the diameter

at breast height, in centimeters. Total biomass per unit area for

each plot was calculated as the total biomass of every measured

stem, divided by the area of the plot. Monk et al(1970) did not

report the error of their regression coefficients.

The canopy height profile (CHP) variable used to describe

canopy structure in this dataset is a modification of MacArthur

and Horn’s(1969) foliage height profile (FHP) variable. While some

investigators have measured height profiles directly, through

stratified clipping (Fujimori 1971) or point quadrat techniques

(Warren-Wilson 1958,1965, Miller 1967, Ford and Newbould 1971),

these methods have largely been supplanted by the optical-quadrat

method. Using this method, optical point quadrats are established

and multiple observations of vertical distance to first leaf

intersection are made using a camera equipped with a zoom

telephoto lens. This distribution is used to estimate the

cumulative percent cover of foliage as a function of height. The

estimate of cover is transformed into the vertical distribution of

foliage using a method that assumes that leaf angle is constant

and that the horizontal distribution of leaves is random.
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 Using these assumptions the amount of foliage that results in

the observed changes in cover can be calculated, using an equation

derived from the Poisson distribution:

FHPC(h) = -ln(1-cover(h)) [Eq. 2],

where FHPC(h) is the cumulative one-sided leaf surface area (or

LAI, Leaf Area Index), expressed as a fraction of projected ground

area, above height h, and cover(h) is the fraction of sky not

covered by  foliage, above height h. The actual FHP is calculated

from FHPC(h) by calculating the additional LAI at each height

interval, with respect to that above it. The theory behind the

original application of this technique is found in MacArthur and

Horn (1969), and a validation of the method is presented in Aber

(1979).

The FHP is the distribution of foliage surface area as a

function of canopy height, from the ground to the top of the

canopy. In contrast, the canopy height profile (CHP) is the

surface area of all canopy material, foliar and woody, as a

function of height. Combining foliar and non-foliar materials was

necessary so that field and remotely sensed canopy height profiles

could be compared. This is because the single-wavelength SLICER

system cannot distinguish between various sources (bark, foliage,

soil) of backscattered illumination. In order to measure the CHP

in the field, the distribution of the height to the first

intersection of any canopy structure type is recorded, rather than

only intersections of foliage. Either canopy or foliage height

profiles can be calculated as relative, (with the total vector
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scaled to one) or absolute (with the total vector scaled to the

total leaf or plant area index of the canopy). In this work

relative canopy height profiles are used exclusively.

2.2.3    Stemmap Dataset   

The stemmap dataset combines field observations of forest

stand structure with coincident remotely-sensed observations of

canopy structure. The measurements of basal area and biomass for

this dataset came from an existing 32 ha stand at SERC in which

every stem greater than 20 cm dbh has been mapped. The SLICER

instrument was flown over the stand in September of 1995, in a

five-beam cross-track configuration. The SLICER footprints were

georeferenced by combining the ranging data with laser pointing

and aircraft position data, obtained by a Inertial Navigation

System and a kinematic Global Position System trajectory,

respectively. The stemmap and SLICER transects were then

registered to a digital orthophoto quadrangle (Maryland DNR,

1991), which was re-projected to the UTM projection (Figure 1a).

The stemmap was geolocated by matching the roads as recorded on

the photo to the areas without trees within the stemmap, which are

associated with the roads. After conversion of the georeferenced

SLICER data to the UTM projection, a systematic offset of unknown

source was noted between forest edges in the orthophoto and as

expressed by the SLICER canopy height profile. In order to ensure

proper registration between the stemmap and the SLICER footprints,
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the SLICER data was translated to match forest edges in the

orthophotos. On this basis, the error in the relative positions of

the stemmap and SLICER transects should be reduced to less than

15m.

To calculate basal area and biomass from the stemmap dataset,

the geo-referenced tree and SLICER waveform data were processed

using programs written in IDL (Interactive Data Language, Research

Systems Inc, Boulder Colorado). For this study, the transect of

remotely sensed data was five laser footprints wide, with each

footprint nominally 10 meters in diameter, and nominally spaced at

10 meter intervals in along- and cross-track dimensions. Data from

the two outer footprint positions in the transect were discarded

due to anomalous height measurements. The anomalous height

measurements are thought to be due to low instrument signal-to-

noise caused by misalignment between the footprint crosstrack scan

pattern and the outer edges of the instruments receiver field-of-

view. Three by three blocks of SLICER footprints were selected

from the central three of the five cross track footprints (See

Figure 1b); each 3 x 3 block was considered to be a single plot.

Of a possible 104 samples within the vicinity of the stem-mapped

stand, 75 were selected for analysis. The remaining plots were

eliminated due to their proximity to either the edge of the stem-

mapped area, a clearing, or roads within the stand, because they

overlapped with other plots, or were in the vicinity of an

instrumented tower within the stemmap.
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A mask was generated for each 3 x 3 block of SLICER waveforms

(Figure 1b), to determine which stems fell within the area sensed

by the instrument. The mask was fit to the outermost positions of

the four corner waveforms, which were calculated as occurring 7.07

m from the center point of each corner waveform. All stems within

the mask were extracted and the total basal area and biomass (as

calculated using Eq 1) of those stems was divided by the area of

the mask, in hectares(See Figure 1b).

Canopy height profiles for each plot in the stemmap dataset

were calculated using the plot’s 9 SLICER waveforms. Validation of

the SLICER system and the processing software’s ability to

remotely sense canopy height profiles can  be found in Lefsky

(1997). Briefly, we hypothesized that the power of the

backscattered laser illumination is subject to the same process of

occlusion observed in the field measurements of height to first

intersection, and modified the MacArthur-Horn method to apply this

approach to the SLICER return energy waveforms. The most critical

step in the modification of the MacArthur-Horn routine was the

separation of the portion of the waveform returned from the ground

surface from the balance of the waveform (Figure 2a). The ratio of

the power of the “ground return” to the total signal power is

inversely proportional to the total canopy cover, but to estimate

canopy cover, the ratio must be adjusted to account for

differences in ground and canopy reflectance at 1064nm. We did

this by assuming that the ratio of canopy and ground reflectance

is approximately 2:1. The total horizontal canopy cover at each
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height increment can then be calculated, which allows the use of

the MacArthur-Horn equation (Figure 2b). The processing that

implements this algorithm was tested using four dissimilar stands

at SERC. A two-sample, uneven sample size, Chi-square goodness-of-

fit analysis was performed to determine if there were

statistically significant differences between field and SLICER

derived canopy height profiles. The canopy height profiles

measured in the field and from SLICER were statistically

indistinguishable (Lefsky 1997). In this work, an interactive

version of the waveform processing algorithm was used to improve

the identification of the position of the ground return.

2.2.4    Comparison of Stemmap and Chronosequence Stand Structure

   Attributes

Stand structure attributes for the chronosequence dataset

were measured considering all stems greater than 2 cm. The

stemmap, in contrast, was mapped using a minimum diameter of 20

cm. To allow comparison of the attributes measured using the 20 cm

and 2 cm limits, we generated a set of 20 cm limit structure

attributes for the chronosequence dataset, so that we had both 2

and 20 cm limit stand structure attributes for that dataset. Using

this data, we estimate that stems between 2 and 20 cm DBH account

for 13% of total basal area, and 8% of aboveground biomass.

Regressions with the 20 cm structure attributes as independent

variables, and the 2 cm structure attributes as dependent
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variables was performed. The resulting regression equations were

then evaluated for their suitability in estimating 2 cm limit

basal area and biomass from the 20 cm limit data; ie., to

determine if there was variability in the 2 cm limit measurements

that was not explained by the 20 cm limit measurements,

specifically in the range of conditions over which we want to

apply these equations.

2.3 Canopy Height Indices

To relate the field and remotely-sensed canopy height profile

measurements to the stand structure attributes, we reduced the

vector information in the CHP to four height indices. We chose to

use the following height indices: maximum canopy height, mean

canopy height, median canopy height, and QMCH. In this discussion,

the canopy height profile is treated as a vector of one meter high

elements, with the value for each element equal to the fraction of

the total profile in the height range of that element. For

example, the first element in the CHP vector represents the

fraction of total canopy surface area between 0 and 1 meters above

the ground.

Maximum canopy height is calculated as the height of the

highest canopy height profile element that has a value greater

than zero. Median canopy height is calculated as the height of the

highest element below which no more than 50% of the total canopy

height profile is distributed. Mean canopy height is calculated as
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the summation of the product of the canopy height profile and the

height of each element. The QMCH is defined as:

 QMCH CHP[i]* i2
max.height

= ∑
1

      [Eq 2],

where CHP[i] is the fraction of total foliage at height “I”.

Regressions between coincident field and SLICER measurements

of the maximum, median and quadratic mean canopy height have

previously been performed using a dataset of 12 plots in two

eastern deciduous forests, as described in Lefsky (1997), where

each of the plots had both field and SLICER measurements of canopy

structure. Among the twelve plots were four from the

chronosequence dataset. Analysis at that time indicated that

SLICER-measured indices of height were closely correlated with

those measured in the field (field vs. SLICER height, R2=76%,

median height, R2=68%, quadratic mean canopy height, R2=78%, e.g.

Figure 3). In that work, a positive bias was noted in the

equations relating the SLICER measurement of height indices to

field measurements. Subsequent re-analysis of that dataset

indicates that intercepts of those equations are not significantly

different from zero, and their slopes are not significantly

different from 1.0. Therefore, no corrections were applied to the

SLICER measured indices of canopy structure in the current work.

To evaluate the relationships among the four height indices, we

plotted them against each other and calculated their r2 values,

using data from the chronosequence dataset.
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2.4 Linear Regression

Linear regression was used to develop equations relating

height indices to basal area and biomass (Objective 1). Four

equations were developed for both basal area and aboveground

biomass, one using each of the four height indices, for a total of

eight equations.  Data for the development of the equations came

from the chronosequence dataset, which has field-measured height

indices. Regression between the height indices and aboveground

biomass indicated that there was a consistent, positive

correlation between the independent values and the variance of the

residuals, and therefore aboveground biomass values were

transformed using a square-root. To assess the relative

explanatory power of each height index, the r2 
 between each height

index and both stand structure attributes in the chronosequence

dataset was calculated, as well as the standard deviation of the

residuals. For the square-root transformed aboveground biomass,

the r2 reported is for the transformed variable, all other

statistics were calculated using the back-transformed predictions.

The resulting equations were then applied to the SLICER-

measured height indices from each plot of the stemmap dataset

(Objective 2), to produce predicted stand structure attributes for

that dataset. The applicability of the regression equations to the

stemmap dataset was evaluated in two ways. For each equation we

calculated the residual between the predicted and observed

(stemmap) stand structure attributes, and the residuals’ mean and
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standard deviation. A final check on the applicability of the

chronosequence derived equations to the stemmap data was performed

using regression between the values predicted for the stemmap

plots using each of the equations, and those observed in the

stemmap dataset. The coefficients of these regressions were then

tested to determine if they differed significantly from those

expected if the actual relationship was the identity equation:

 Predicted = B0 + B1 * Observed,

where B0=0 and B1=1. Preliminary results indicated that the r
2

values between the predicted and observed stand attributes for the

stemmap dataset were smaller than those which were obtained for

the regressions between the height indices and stand attributes

made using the chronosequence dataset. One difference between the

two datasets is the narrower range of conditions, of both stand

attributes and height indices, in the stemmap dataset. In order to

determine if this was a factor in the lower r2 values, correlation

coefficients between each of height indices and each of the stand

attributes were calculated, for four datasets.  These datasets

were: all plots from the chronosequence dataset, all

chronosequence plots less than 30 meters tall, all chronosequence

plots greater than or equal to 30 meters tall, and all stemmap

plots greater than or equal to 30 meters, which included all the

stemmap plots.

2.5 Stepwise multiple regression
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Stepwise multiple regression has been proposed as a method to

predict basal area and stem volume from vertical canopy profile

measurements (Hyyppa and Pulliainen, 1994). Stepwise multiple

regressions were performed to check if more variance in the stand

structure attributes was explained by linear combinations of the

canopy height profile elements than by the indices derived from

it. These regressions were conducted using the elements of the

canopy height profile, aggregated to 11 four-meter resolution

bins, as the independent variables. For example, the first

independent variable was the fraction of the CHP between 0 and 3

meters above the ground.
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3.0 RESULTS

3.1 Overview

Regression analysis between 20 cm and 2 cm stand attributes

indicated that basal area and aboveground biomass measurements

made using the 20 cm limit could accurately predict 2 cm

attributes (Figure 4a & 4b). Therefore, stand structure attributes

for the plots from the stemmap dataset, which had been measured

using a 20 cm limit, were transformed using the resulting

regression equations, so that they could be compared directly to

attributes from plots in the chronosequence dataset. Height

indices calculated from each plot’s CHP were highly correlated

with each other, but maximum canopy height was least well

correlated with the other indices (Figure 5). High correlations

between all of the height indices and both stand structure

attributes were observed as results of the regression analysis

using data from the chronosequence dataset (Figure 6). We then

calculated estimated stand attributes for the stemmap dataset,

using the equations from this chronosequence regression analysis

and height indices from the stemmap dataset (Figure 6). While

correlation coefficients between the observed and these new

predicted estimates of stand attributes were lower than the

correlation coefficients obtained when developing the original

equations, other measures of the predictive power of these

equations, such as the standard deviation of residuals, were

similar (Tables 2,3). The QMCH index was found to be the most

reliable predictor of basal area and biomass when results from the
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stemmap and chronosequence datasets were considered. Equations

developed using stepwise multiple regressions explained as much

variance as those resulting from simple regression using the

height indices, but their predictions of the stand attributes of

the stemmap plots were not as accurate.

3.2 Prediction of 2 cm Stand Structure Attributes from 20 cm Stand

Structure Attributes

Using the chronosequence dataset, strong linear relationships

were found between basal area and biomass measured with the 2 cm

limit and the same attributes measured with the 20 cm limit. For

both basal area and aboveground biomass (Figure 4a&b) the

relationships consist of a range of low values in which the two

variables are weakly correlated, and a range of higher values in

which the two variables are very strongly related. The range of

values found for each stand attribute from the stemmap data (as

measured using the 20 cm limit) are indicated on the graphs, and

indicate the range over which we want to use the relationship.

Within the range of stand structure attributes observed in the

stemmap dataset, the relationship between then 2 and 20 cm limit

indices remains highly correlated and linear. Regression equations

for each attribute were developed using only the data that fell

within the range where the relationship between the 20 cm and 2 cm

measurements were well correlated. The equations developed are:

Basal Area2 = 12.503 + 0.809 * Basal20, r2=93%, P<0.0001, and,

Biomass2=38.016 + 0.934 * Biomass20, r2=99%, P<0.0001.
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These equations have been used to estimate 2 cm limit stand

structure attributes for the stemmap plots. All subsequent

analyses are for 2 cm limit attributes.

3.3 Relationships Among Canopy Height Indices

High levels of correlation were found between each of the four

canopy height indices, as illustrated in Figure 5, but there was

some variability . Maximum canopy height has the lowest

correlation to the other variables, especially for taller stands.

Median canopy height is highly correlated to the two mean height

indices. The two mean height indices, the mean canopy height and

the QMCH, are the most highly correlated of the variables.

3.4 Relationship of Canopy Height Indices to Basal Area and

Biomass
For the chronosequence dataset, all four height indices

considered in this work were highly correlated with both basal

area and aboveground biomass, with r2 values between 60% and 80%

(Table 2a). In all cases, the correlation between the height

indices and aboveground biomass was higher than the corresponding

correlation between the height indices and basal area. The

standard deviations of the residuals resulting from each

regression are lowest when the r2 values are highest. Of the four

equations predicting basal area, the QMCH has the largest r2 value

and the smallest standard deviation of residuals. Of the four

equations predicting aboveground biomass, maximum canopy height
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and the QMCH both explain 80% of variance, but maximum canopy

height has a smaller standard deviation of residuals. The absolute

differences in these two indicators (r2 and the standard deviation

of residuals) between the height indices are small in magnitude,

and the differences in r2 are non-significant statistically.

The ability of each of the regression equations to predict

the basal area and biomass of plots in the stemmap dataset was

evaluated in several ways.  Scatterplots of predicted and observed

basal area and biomass are presented in Figure 6. For each stand

attribute, the two best equations were selected for inclusion in

Figure 6 on the basis of the goodness-of-fit statistics presented

in Table 2. Examination of the figures indicate that the

variability of the stemmap dataset plots is similar to that of the

chronosequence dataset. However, the r2 values of the predicted vs

observed regression equations are much lower than those of the

regression equations predicting stand attributes from height

indices. This result must be viewed within the context of the

wider range of conditions observed in the chronosequence plots.

For a constant number of data-points distributed around a linear

relationship with a specified standard deviation, the amount of

variance explained by the linear relationship declines with

decreasing range of the independent variable.

This effect is demonstrated by Table 3, which documents the

coefficients of determination between each of height indices and

the two stand structure attributes for the four dataset defined in

the methods. The high determination coefficients obtained using
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the entire chronosequence dataset are maintained in the subset of

plots shorter than 30m tall. In every case but one (QMCH and

Basal Area), determination coefficients drop when chronosequence

plots equal to or taller than 30m are considered. When these

determination coefficients are compared to those calculated using

the stemmap dataset differences still exist, but they are much

smaller than the differences obtained when the stemmap plots are

compared to the total chronosequence dataset.

Another index of the strength of the relationships include

the mean and standard deviation of residuals. The mean residual

indicates the total accuracy of all the predictions made with an

equation, while the standard deviation of residuals indicates the

ability of each equation to predict individual values. The mean

residual values for the basal area equations resulted in a error

between -9.9 and 7.2 m2*ha-1 , or between -25 % and +19 % of the

mean basal area for the stemmap plots. The mean residual values

for the aboveground biomass equations resulted in a error between

-130.1 and 80.2 Mg*ha-1 , or between -34 % and 21 % of the mean

biomass for the stemmap plots. Of the four equations predicting

basal area and biomass, mean canopy height and the QMCH have the

mean residual values with the lowest magnitudes.

The standard deviation of residual values for the basal area

equations ranged between 4.4 and 6.5 m2*ha-1, and were in each case

lower than those observed in the original regressions. Although

the differences between the equations are small in magnitude, they
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do represent meaningful differences when compared to the standard

deviation of the dependent variable, basal area, which is 5.5

m2*ha-1. The equation that uses the median canopy height has

residuals who standard deviation is larger that 5.5 m2*ha-1, due to

its extremely poor fit. The reduction of the standard deviation

from 5.5 to 5.3 m2*ha-1 represents a 7 % reduction in variance,

while the reduction from 5.5 to 4.4 represents a 37% reduction.

Similarly, the standard deviation of the stemmap biomass values is

56.4 Mg*ha-1. The equations using maximum and median canopy height

have residuals who standard deviation is larger than 56.4 Mg*ha-1,

also due to their poor fit. The reduction of the standard

deviation of  biomass residuals from 56.4 to 50.9 Mg*ha-1 represents

a 20% reduction in variance, while the reduction of the standard

deviation from 56.4 to 46.7 Mg*ha-1 represents a 33 % reduction in

variance. Of the four equations predicting basal area, the QMCH

and the mean canopy height had the lowest standard deviation of

residuals. The QMCH and the mean canopy height also had the lowest

standard deviation of residuals of the four equations predicting

aboveground biomass.

Of the predicted vs. observed regression for the four

equations predicting basal area, both the maximum and median

canopy height had a slope and intercept significantly different

from 1 and 0, respectively. The other equations had non-

significant p-values of similar magnitude.  Of the four equations

predicting biomass, the equations using maximum, median and mean
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canopy height had either one or both coefficients that were

significantly different from those expected.

3.5 Stepwise Multiple Regression

Results from the stepwise multiple regression analysis are

presented in Table 2B. The equations predicting basal area and

biomass make their predictions from the same three variables, the

fraction of the total profile between 16 and 20 meters above the

ground, between 28 and 32 meters above the ground, and between 36

and 40 meters above the ground. The three slope coefficients

appear to increase exponentially as a function of height. The

equation predicting basal area explains nearly as much variance as

the most correlated height index (69% vs. 70% for the QMCH), and

has a lower standard deviation of residuals then any height index

(7.7 vs. 7.8 m2*ha-1 for QMCH). The equation predicting aboveground

biomass explains slightly more variance than as the most

correlated height indices (81% vs. 80% for maximum canopy height

and QMCH), and also has a lower standard deviation of residuals

then any height index (61.4 vs. 75.4 Mg*ha-1).

The equations derived from the stepwise multiple regression

were then applied to the stemmap dataset (Table 2B). Both

equations have residual statistics that were near the best of the

height index equations. The predicted vs. observed regressions for

both basal area and biomass had intercepts that were significantly

different from what would be expected, assuming the identity
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relationship (See Figure 6), and the equation predicting basal

area had a slope that was also significantly different.

4.0 DISCUSSION

4.1 Relationship of Canopy Height Indices to Basal Area and

Biomass

The development of equations relating height indices to basal

area and biomass indicated that, although there were some

differences in the predictive ability of the height indices, those

differences were small, and statistically non-significant.

Nevertheless, the canopy structure information summarized in the

median, mean, and quadratic mean canopy height indices did improve

their estimates of stand basal area, albeit non-significantly,

relative to the maximum canopy height. Maximum canopy height was

as good or better than the other variables at predicting

aboveground biomass. This reflects a difference in what the two

attributes (basal area and biomass) represent, and in how they are

calculated. Basal area, as the name suggests, is a two-dimensional

measurement, and increases, on a per stem basis, as a function of

DBH squared. Biomass is three-dimensional, the product of wood

density and stem volume, and stem volume is a function of the

product of stem basal area and height. This means that, on a per

stem basis, biomass must increase as a function of DBH to a power

greater than 2, as in Eq. 1. In practice, this means that, as a

function of stem diameter, stem biomass increases more steeply
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than stem basal area. As an example, the  ratio of the basal areas

of stems 95 cm and 2 cm in diameter is 2060:1, while the ratio of

the biomass of those two stems is 16000:1, an eight-fold increase.

As a result, the relative contribution of large stems to

aboveground biomass is greater than their relative contribution to

basal area. Height indices that mostly reflect the height of the

largest trees in a stand, such as maximum canopy height and the

QMCH, should be most highly correlated with biomass. Conversely,

basal area is more sensitive to the number and size of smaller

stems. Indices which take into account the average position of

foliage, such as the median, mean and quadratic mean canopy

height, should be more highly correlated with basal area. This is

because these indices represent the average height of all trees,

not just the largest ones. The QMCH index includes information

about the distribution of tree heights, unlike maximum canopy

height, but weights the importance of the taller tree heights,

unlike mean or median canopy height. This may explain why it is

highly correlated with both stand structure attributes. The

relative contribution of large stems to biomass and basal area may

also explain why the correlation coefficients between the height

indices and biomass are larger than the correlations between the

height indices and basal area.

The quadratic mean canopy height is an index developed during

the course of this work, and has no literature supporting it. Its

development was suggested by the quadratic mean diameter used in
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forest mensuration-- the diameter of the tree with the average

basal area. The QMCH, as defined earlier (Eq. 3), is the square

root of the summation of the product of the canopy height profile

and each element’s squared height. Niklas (1994) reports that for

a dataset of angiosperm “champion” trees, the relationship between

tree height and diameter is

H = 19.1D0.474 ,

transforming to predict diameter results in

D = (H/19.1)2.1.

Note the similarity of the exponent of the transformed

equation to the square power used to weight the elements of the

canopy height profile, and the similarity of the exponent of the

first equation to the square root used to transform the weighted

canopy height profile (Eq 3). This suggests the canopy height

profile is being weighted by a factor that is proportional to the

diameter required to support it, and conversely its average is

transformed, by the square root, to a variable that is

proportional to height.

The application of regression equations, developed using the

chronosequence dataset, to the stemmap dataset indicated that

there were relevant differences in the equations suitability.  The

QMCH and mean canopy height were the best predictors of basal area

for plots in the stemmap, but the QMCH is marginally superior in

all but one aspect (mean residual) of regression quality. For the

prediction of biomass, the QMCH and maximum canopy height are very
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similar in terms of regression quality, but when applied to the

stemmap data the equation using mean canopy height has a higher

standard deviation of residuals, and the slope and intercept of

the predicted-vs.-observed regression line for the mean canopy

height is significantly different from the identity line. While

the r2 values associated with the stemmap dataset were lower than

those associated with the chronosequence dataset, this is due to

differences in the range of conditions found in each dataset, not

the strength of relationships relating height indices to stand

structure attributes.

4.2 Stepwise Multiple Regression

The objective of the stepwise multiple regression analysis

was to see if the individual elements of the canopy height profile

could improve the predictions of stand structure attributes, as

compared with simple regressions using height indices. The

stepwise multiple regressions explained as much variance as linear

regression with canopy height indices, but the resulting equations

were less applicable to the  stemmap dataset than the best height

index, the QMCH. Working with a dataset of canopy height profiles

for two sites with differing composition, Lefsky (1997) suggests

that the height index approach is qualitatively preferable,

because it is probably less site specific than predictions made

directly from the canopy height profile. That the percentage of

variance explained by each approach is similar is indicative that
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the height index approach is probably explaining as much variance

as can be explained.

4.3 Height Index Approach

The height index approach used in this work is similar to

that previously used in the analysis of first-return laser

altimeters. Many approaches to the analysis of that data have

followed the work of MacLean (1982), who showed that the area

between a line following the height of the canopy, and another

following the ground surface, is closely and linearly related to

the natural logarithm of stand volume. The area between these two

lines measures the average height of the upper surface of the

canopy. Large footprint surface lidar systems, such as the one

used in this paper, do not provide a high resolution record of

this measurement. However, within the large footprint waveform,

the distribution of vertical surfaces is recorded. A weighted

height index performs the same function as the canopy height

trace-- except that it integrates the height distribution of the

entire canopy, not just it’s outer surface, as in Naesset (1997a).

The canopy height profile transformation further serves to correct

the vertical distribution of returned power to reflect the power

available for return from the canopy at each successive level

through the canopy. The fact that a height index (the QMCH) that

is weighted towards the top of the canopy does better than one

that isn’t suggests that the height of the upper canopy surface

may still be an important index for predicting stand attributes.
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The value of the coefficient of determination between the

stand structure attributes and height indices for both datasets

are consistent with those reported in the laser altimetry

literature (Maclean 1982, Nelson et al. 1988a, Nelson et al.

1988b, Nilsson 1996, Hyyppa and Hallikainen 1996, Naesset 1997a).

A determination coefficient (r2) of 61 % has been reported for the

prediction of basal area (Hyyppa and Hallikainen 1996), while

values between 53 % and 92 % have been reported for the prediction

of stem volume and biomass. We calculated an adjusted r2 of 70 %

for basal area and an adjusted r2 of 80 % of biomass for the

chronosequence generated regression equations. While these

equations were developed using field estimates of canopy

structure, we have shown that they are applicable to the

prediction of stand structure attributes from canopy height

indices measured using the SLICER scanning lidar system. While the

r2 values of the predictions of basal area and biomass of plots

from the stemmap dataset were lower than those obtained with the

chronosequence dataset, the standard deviation of the residuals

for both datasets are nearly equal. The higher r2 values for

equations developed with the chronosequence data reflects its

wider and more uniform distribution of conditions.

We have seen that the regressions relating the field measured

QMCH index to basal area and biomass are applicable to remotely

sensed height indices, for the range of stand conditions observed

in the stemmap dataset. Can this conclusion be applied to the

whole range of conditions found in the chronosequence dataset? If
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the error in the remotely sensed QMCH estimate is constant

throughout the range of canopy structure conditions, we can. At

present, no direct evidence is available to answer this question.

Some steps in the processing of the raw waveform data, such as the

delineation of the ground return, could tend to introduce a

constant error into the estimates of the canopy height profile,

which will have an larger proportional effect on shorter stands,

but such an  effect has not yet been identified. If the ability to

remotely sense the canopy height profile is constant, it is

logical to conclude that the overall strength and the coefficients

of the relationship between remotely-sensed height and field-

collected stand structure attributes is the same as that found

between optical-quadrat method height indices and stand structure

indices.

When considered along with the results of Lefsky (1997) which

concludes that field and SLICER sensed canopy height profiles were

statistically indistinguishable, this work supports the premise

that SLICER and field collected profiles are directly comparable.

If the success in validating SLICER is extended to other forest

types, it would provide an unprecedented level of flexibility in

developing remote sensing applications using surface lidar

techniques. Whereas conventional optical and radar remote sensing

platforms do not have conveniently measured field analogues for

their measurements, existing relationships between maximum canopy

height and forest ecosystem structure and function can be applied

directly to surface lidar remote sensing. For those forest types
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where the MacArthur-Horn technique can be applied, field estimates

of the canopy height profile can offer “proof of concept” support

to new analyses, without the difficulty of obtaining laser

altimetry and geo-locating the laser footprints in the field,

although the 15 m error in footprint position did not seem to

overly effect this current work. Current work to establish a laser

altimetry profile measurement capability for use in the field will

increase the desirability of this approach. 

5.0 CONCLUSIONS

Indices measuring the vertical distribution of canopy

structure are highly correlated with stand basal area and

aboveground biomass. Relationships developed using field measured

canopy height profiles were found to be applicable, in varying

degrees, to remotely sensed canopy height profiles. The quadratic

mean canopy height (QMCH) was the height index which was both

highly correlated to both basal area and aboveground biomass, and

had the best overall predictions of the stand attributes of the

remotely sensed dataset. We find that reasonable because the QMCH

is a weighted average of the canopy height profile, where the

weights are proportional to the amount of woody structure required

to support foliage at each height. Stepwise multiple regression of

basal area and biomass using the canopy height profile vector as

independent variables did increase the power of the field-measured
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regression equations, but were not as applicable to the remotely

sensed dataset as was the QMCH.
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FIGURE LEGENDS

1. A) Illustration of the SLICER footprints overlain on the SERC

stemmap, and B), detail of the sampling geometry.

2. Steps in the transformation of the lidar waveform into an

estimate of the vertical distribution of canopy surface area, the

canopy height profile.

3. Regressions between field and SLICER measured quadratic mean

canopy height (QMCH) from Lefsky (1997). Field QMCH = 2.002 +

0.798 * SLICER QMCH, R2=0.78.

4  A) Comparison of basal area measured using a 2 and 20 cm

minimum DBH limit calculated with data from the chronosequence

dataset, and the observed range of basal areas (calculated with

the 20 cm minimum DBH limit) in the stemmap dataset, and B) the

same for aboveground biomass.

5. Scatterplots comparing each of the four height indices from the

chronosequence dataset to each other. N=48.

6. Scatterplots of predicted vs. observed basal area (a-c) and

biomass (d-f), for the chronosequence and stemmap datasets, as

predicted from the two best height index regression equations, and

by stepwise multiple regression. Dashed line indicates the
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identity line, solid line indicates the predicted vs. observed

regression for the stemmap dataset.
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Table 1. Stand attributes for the chronosequence  and stemmap
datasets.

Dataset: Chronosequence Stemmap
Stem Data Source Forty-eight plot

observations.
75 plots
subsetted from a
32 ha stemmap.

Canopy Height Profile Source Optical quadrat
method.

SLICER waveforms

Number of Plots 48 75
Mean Basal Area(m2*ha-1) 36.1 37.51

Mean Aboveground Biomass
(Mg*ha-1)

235.9 239.01

Maximum Canopy Height (m)
     Maximum 40.0 44.0
     Mean 26.5 36.2
     Minimum 4.0 30.0
Mean QMCH (m) 14.4 18.1
Notes: 1) Basal area and Aboveground Biomass reported for the
stemmap dataset are for predicted 2 cm stand structure attributes.
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Table 2. Regression equations for linear(A) and stepwise multiple regressions(B).
Columns 1 through 4 record the name of the dependent variable, the regression
equation for each height index, and the r2 and standard deviation of residuals for
equations developed using data from the chronosequence dataset (n=48). Columns 5
and 6 record the mean and standard deviation of residuals which result from the
application of each equation to height indices from the stemmap dataset (n=75).
Columns 7 through 9 record the r2, and coefficients of regression between
predicted and observed basal area and biomass from the stemmap dataset, and the
significance of the difference between the observed “predicted-observed”
regression, and identity.

A. Results of linear regressions
Original Regressions using field data
from the Chronosequence dataset(n=48)

Application of Regressions to Stemmap Data
(n=75)

Residual Statistics
Predicted vs. Observed
Values for the Stemmap

Dataset
(Observed=B0+B1Predicted)

Dependent
Variable Equation r2

Stdev1

of
Resid.

Mean
Residual

Stdev1 of
Residuals r2

B0
P(B0=0)

B1
P(b1=1)

Basal Area
(m2/Ha)

7.84 + 1.07 * Maximum
Canopy Height

60%
p<0.0001

8.9 -9.9 5.3 16% 9.3
p=0.02

0.60
p<0.0001

9.80 + 2.13 * Median
Canopy Height

66%
p<0.0001

8.3 7.2 6.5 3% 31.2
p<0.0001

0.22
p<0.0001

6.34 + 2.30 * Mean Canopy
Height

65%
p<0.0001

8.3 1.9 4.7 28% 3.4
p=0.36

0.96
p=0.68

6.05 + 2.08 * QMCH 70%
p<0.0001

7.8 -2.1 4.4 37% -4.8
p=0.17

1.1
p=0.47

Biomass
(Mg/Ha)

(2.77 + 0.44 * Maximum
Canopy Height)2

80%
p<0.0001

73.9 -130.1 62.1 20% 87.8
p=0.001

0.41
p<0.0001

(4.78 + 0.79 *  Median
Canopy Height)2

70%
p<0.0001

91.6 80.2 68.1 0% 220.7
p<0.0001

0.12
p<0.0001

(3.16 + 0.88 * Mean
Canopy Height)2

73%
p<0.0001

89.0 28.4 50.8 21% 80.8
p=0.002

0.75
p=0.019

(2.90 + 0.80 * QMCH)2 80%
p<0.0001

75.1 -16.5 46.7 33% 28.1
p=0.22

0.83
p=0.07

1. Stdev = Standard Deviation

B. Results of Stepwise Multiple Regression
Original Regressions using field data
from the Chronosequence dataset(n=48) Application of Regressions to Stemmap Data

(n=75)

Residual Statistics
Predicted vs.Observed
Values for the Stemmap

Dataset
(Observed=B0+B1Predicted)

Dependent
Variable Equation r2

Stdev1o
f

Residu
al

Mean
Residual

Stdev1 of
Residuals r2

B0
P(B0=0)

B1
P(b1=1)

Basal Area
(m2/Ha)

21.5+( 49.1*CHP[16:20])
    +(156.2*CHP[28:32])
    +(244.8*CHP[36:40])

69%
p<0.0001

7.7 6.0 4.5 35% 10.6
p=0.004

0.854
p=0.123

Biomass
(Mg/Ha)

91.1+( 403.2*CHP[16:20])
    +(1597.0*CHP[28:32])             
    +(4109.8*CHP[36:40])

81%
p<0.0001

61.4 50.2 45.8 36% 86.3
p<0.0001

0.81
p=0.004
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Table 3. Comparison of coefficients of determination for four
datasets; all chronosequence plots, chronosequence plots less than
30 m tall, chronosequence plots greater than or equal to 30 m
tall, and all stemmap plots greater than or equal to 30 m tall.
Canopy height is abbreviated by CH.

Dependent
Variable

Independent
Variable

Chrono-
sequence

Chrono-
sequence

Chrono-
sequence

Stemmap

All Plots Plots < 30m Plots => 30m Plots =>30m

Basal Area Maximum CH 60% 47% 24% 16%

Median CH 66% 44% 40% 3%
Mean CH 65% 40% 35% 28%

QMCH 70% 44% 46% 37%

Biomass Maximum CH 80% 72% 39% 20%

Median CH 70% 67% 18% 0%

Mean CH 73% 63% 15% 21%

QMCH 80% 69% 29% 33%

Number of
Plots

48 24 24 75
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2. The posterior half of the ground
return is defined as the total signal
between peak and height at which the
power of the signal falls  below
background noise.

3. The posterior half of the ground
return is copied and flipped vertically
to define the anterior half of the ground
return. Power greater than the level
established by the  ground return is
assumed to be understory canopy.

1. The first step in processing the lidar
waveform is the identification of the
peak of the ground return, which is
assumed to be the mean elevation of the
forest floor.
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2. 3.

1. After the ground return is delineated from the remainder of the waveform the fraction
of total power returned from the canopy can be calculated. Canopy cover  can then be
estimated by correcting the canopy power  for the relative reflectivities of foliage and
soil.

2. The cumulative cover fraction can then be
transformed using the MacArthur-Horn (1969) 

B. Canopy Height Profile Calculation

Fractional Cover
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