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ABSTRACT

A et hod of predicting two forest stand structure attri butes,
basal area and aboveground bi onass, from neasurenents of forest
vertical structure was devel oped and tested using field and
renotely sensed canopy structure neasurenents. Coincident
estimates of the vertical distribution of canopy surface area (the
canopy height profile), and field-measured stand structure
attributes were acquired for two datasets. The chronosequence
dat aset consists of 48 plots in stands distributed within 25 mles
of Annapolis, MD, with canopy height profiles neasured in the
field using the optical -quadrat nethod. The stemmap dat aset
consists of 75 plots subsetted froma single 32 ha stem nmapped
stand, with neasurenments of their canopy height profiles nade
usi ng the SLI CER (Scanni ng Lidar | mager of Canopies by Echo
Recovery) instrunment, an airborne surface |idar system Four
hei ght indices, maxi mum nedian, nean and quadratic nean canopy
hei ght (QMCH) were cal cul ated fromthe canopy hei ght profiles.
Regr essi ons between the indices and stand basal area and bi omass
wer e devel oped using the chronosequence dataset. The regression
equat i ons devel oped fromthe chronosequence dataset were then
applied to height indices calculated fromthe renotely sensed
canopy height profiles fromthe stenmap dataset, and the ability
of the regression equations to predict the stemmap plot’s stand
structure attributes was then evaluated. The QVCH was found to
explain the nost variance in the chronosequence dataset’s stand

structure attributes, and to nost accurately predict the val ues of



the sane attributes in the stemmap dataset. For the chronosequence
dat aset, the QMCH predicted 70 % of variance in stand basal area,
and 80 % of variance in aboveground bi omass, and renmai ned non-
asynptotic with basal areas up to 50 nfha!, and aboveground bi onass
val ues up to 450 My*ha*. Wien applied to the stemmap dataset, the
regression equations resulted in basal areas that were, on
average, under-estimated by 2.1 ntha!, and bi omass val ues were
under-estimated by 16 My*ha', and expl ai ned 37 % and 33 % of

vari ance, respectively. D fferences in the nmagnitude of the
coefficients of determnation were due to the wi der range of stand
conditions found in the chronosequence dataset; the standard

devi ation of residual values were lower in the stemmap dat aset
than on the chronosequence datasets. Stepw se mnultiple regression
was performed to predict the two stand structure attributes using
t he canopy height profile data directly as independent vari abl es,
but they did not inprove the accuracy of the estinmtes over the

hei ght i ndex approach.



1.0 | NTRODUCTI ON

Most studies of forest devel opnment focus on what is commonly
referred to as “stand structure”, the size and nunber of woody
stens per unit area, and related statistics (Mles 1979, diver
and Larson 1996). However, the forest canopy, "the collection of
all |leaves, twi gs, and branches formed fromthe conbination of al
the crowns in the stand" (Maser 1989), is another functionally and
structurally critical conponent of the forest. The canopy is
responsible for the magjority of material and energy exchanges with
t he atnosphere, a critical habitat for forest biota, and a
controlling influence over the mcro-climte of the forest
interior. Increasingly, species vertical position is recognized
as a nmaj or determ nant of successional status (Wernman and diver
1979, Aber 1979, Bicknell 1982, @ulden and Loriner 1985, Smith
1986, diver and Larson 1996), and therefore canopy structure, the
“organi zation in space and tinme, including the position, extent,
guantity, type, and connectivity, of the aboveground conponents of
veget ati on” (Parker 1995), plays a dynamc role in forest
devel opnent .

Studi es of forest devel opnent have focused on the size and
nunber of stens because they are conveniently neasured. Study of
forest canopi es has been hindered by the difficulty of
characterizi ng canopy structure (Nadkarni and Parker 1994), and
vari ous met hods have been devel oped to do so fromnore easily

obt ai ned neasurenents such as tree diameter distributions (Mawson



et. al. 1976). A new renote sensing devi ce devel oped at NASA s
Coddard Space Flight Center, SLICER (Scanning Lidar |mager of
Canopi es by Echo Recovery, Blair et al. 1994, Harding et al.
1994), is able to rapidly nmeasure the vertical distribution of
canopy surface area, through the integration of laser altimetry
and surface lidar (light detection and rangi ng) techni ques.

Laser altinmetry is an established technol ogy for obtaining
accurate, high resolution neasurenents of surface el evations
(Krabill et al. 1984, Bufton et. al. 1991). Laser altinmetry is
used to neasure the distance between the sensor and the object
sensed through the precise timng of the round-trip return time of
t he backscattered reflection of a short duration pul se of |aser
light. The first generation of laser altineters for renote
sensi ng of vegetation were designed to record the height to the
first surface intercepted by the |laser over a relatively smal
sanpling area, or footprint, usually less than one nmeter in
diameter (Arp et al. 1982, Schrier et al. 1984, 1985, Ritchie et
al. 1993, Menenti and Ritchie 1994, Wltz et al. 1994). Returns
fromthe top surface of the forest canopy were conbined with
subsequent neasurenents of distance to the forest floor, obtained
t hrough gaps in the forest canopy, to infer the height of the
dom nant trees. A nore technically advanced version of this
approach invol ves recording, for each individual small footprint,
the distance to the first return fromthe upper surface of the
vegetation, and to the last return fromthe ground surface. The

di st ance between these two neasurenents is inferred to be the



veget ati on hei ght for each footprint. Measurenents nade using
t hese techni ques have proved useful for predicting canopy height,
ti mber volume and forest biomass (Macl ean and Krabill 1986, Nel son
et al. 1988a, 1988b, Naesset 1997a & 1997b), species type (Jensen
et al. 1987) , and percent canopy cover (Ritchie et al. 1993, and
Wltz et al. 1994).

The SLICER instrunment is one of a new generation of systens
(Al dred and Bonnor 1985, N |sson 1996) that augnent traditional
first-return laser ranging with a surface lidar capability. In
surface lidar, the power of the entire return |aser signal is
digitized, resulting in a waveformthat records the vertica
di stribution of the backscatter of laser illumnation from al
canopy el enents (foliar and woody) and the ground reflection, at
t he wavel ength of the transmtted pul se (1064 nm in the near-
infrared). The use of relatively large footprints (5-15 ) is
designed for the recovery of returns fromthe top of the canopy
and the ground in the sane waveform while remaining snmall enough
to be sensitive to the contribution of individual crowns of
east ern deci duous species. Currently, the SLICER system has been
nmounted on various aircraft platforns and fl own over sites in a
range of footprint nunber and size configurations. Details of the
techni cal aspects of SLICER can be found in Blair et al. (1994)
and Harding et al. (1994).

Motivation for work relating forest attributes to |idar
sensed canopy structure has been enhanced by the announcenent t hat

VCL, the Vegetation Canopy Lidar m ssion, has been funded by



NASA' s Earth System Sci ence Pat hfi nder (ESSP) program (Dubayah
1997). Schedul ed to be launched in md 2000, VCL will provide
gl obal coverage of surface LIDAR data simlar to that used in this
study, with transects of contiguous 25 neter footprints spaced
every 2 kmalong the earth’s surface.
1.1 ojectives

This current work is part of a larger effort to verify the
ability of SLICER to accurately neasure canopy height profiles
(Lefsky 1997), to relate the canopy height profiles to sinple
stand structure attributes (this paper), and to relate changes in
t he canopy height profiles from a 300 year chronosequence to the
processes of stand dynam cs (Lefsky 1997). The ains of this paper
are: 1) to determine if estimates of two stand structure
attri butes, basal area and aboveground bi omass, can be nade using
i ndi ces derived fromfiel d-neasured canopy height profiles, 2) to
determne if regression equations devel oped fromfi el d- measur ed
canopy height profile indices can accurately predict the sane two
stand structure attributes when applied to indices derived from
canopy height profiles nmeasured by SLICER and 3) to determ ne the
rel ati ve power of stepwi se nultiple regression using the el enents
of the CHP, and sinple regression using height indices, to predict

basal area and aboveground bi onass.

2.0 METHODS AND MATERI ALS

2.1 Overview



Two dat asets, stemmap and chronosequence, each consisting of
spatially coi nci dent neasurenents of canopy and stand structure,
were collected in the coastal plain of Maryland, USA. For both
dat asets, two stand structure attributes, basal area and
aboveground bi omass, were derived fromfield nmeasurenents of tree
di ameter at breast height. The canopy structure of the plots in
bot h datasets was quantified using the canopy height profile
nmeasurenment, the distribution of foliage as a function of height.
The canopy height profiles of plots in the chronosequence data
were measured in the field using the optical point-quadrat nethod
of Aber (1979). The canopy height profiles of plots in the stemmap
dat aset were neasured by the SLI CER scanning lidar instrunent
using a processing algorithmbased on the principles of the

opti cal -quadrat net hod. Canopy hei ght indices, including maxi num
nmean, medi an, and quadratic nean canopy height (QVCH) were
calculated for plots fromboth datasets using their associated
canopy height profile measurenents. Regressions between canopy
hei ght indices and basal area and aboveground bi omass were

devel oped using the chronosequence dataset. These sane regression
equations were then applied to the renotel y-sensed hei ght indices
fromthe stenmap dataset, and the resultant estinates of basal

area and bi omass were conpared to those neasured in the field.

2.2 Data Col l ection and Pre-processing
2.2.1 Floristics



Data used in this work were collected as part of a larger
project describing the structural, floristic and environnent al
devel opnent of tulip-poplar stands. The tulip-poplar association
is the nmost conmon upl and forest association in the coastal plain
and nmuch of the piednont of md-Atlantic North America, fromthe
Carolinas to New Jersey. Though variable in conposition, tulip
popl ar (Liriodendron tulipifera) occurs at nost stages of
succession. Its life cycle begins with high popul ati ons of sweet
gum ( Li qui danbar styriciflua) or tulip poplar follow ng
agri cul tural abandonment or tinbering; these species persist for
several decades. In mature stands, the canopy is conposed of oaks,
hi ckori es, beech and some tulip poplar, with a diverse conpl enent
of m d- and sub-canopy species. Pines (Pinus virginiana and P

taeda) are rarely a nmajor conponent in these forests.

2.2.2 Chronosequence dat aset

The chronosequence dataset consists of 48 plot observations
fromstands dispersed within a 25 mle radius of the Smthsoni an
Envi ronnment al Research Center (SERC), |ocated in Edgewater,

Maryl and, USA (Brown and Parker 1994). Stand structure information
for the chronosequence dataset was coll ected using variabl e-si zed
plots that were scal ed roughly to the maxi nrum hei ght of the
canopy; the average plot was 20 mX 50 m |In each plot, the
speci es and breast-height dianeters of all |iving woody pl ants

| ess than or equal to 2 cmin dianeter were recorded. These data



were used to estinmate basal area directly, and to estimate the
aboveground woody bi onass of each plot through the use of an
allonetric equation (Table 1). The equation used was that of Monk
et al.(1970), which was developed in a forest of simlar
conposi tion:

| og,,B = 1.9757 + 2.5371 | og,,DBH [ Eq. 1]
where B is the bionmass per stem in grans, and DBH is the dianeter
at breast height, in centineters. Total bionmass per unit area for
each plot was calculated as the total bionass of every neasured
stem divided by the area of the plot. Mnk et al (1970) did not
report the error of their regression coefficients.

The canopy height profile (CHP) variabl e used to describe
canopy structure in this dataset is a nodification of MacArthur
and Horn’ s(1969) foliage height profile (FHP) variable. Wile some
i nvestigators have neasured height profiles directly, through
stratified clipping (Fujinori 1971) or point quadrat techniques
(Warren- W1 son 1958, 1965, MIler 1967, Ford and Newbould 1971),

t hese net hods have | argely been suppl anted by the optical - quadr at
nmet hod. Using this nethod, optical point quadrats are established
and nultiple observations of vertical distance to first |eaf

i ntersection are nmade using a canmera equi pped with a zoom

tel ephoto Iens. This distribution is used to estinmate the
cunul ati ve percent cover of foliage as a function of height. The
estimate of cover is transfornmed into the vertical distribution of
foliage using a nmethod that assunes that |eaf angle is constant

and that the horizontal distribution of |eaves is random
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Usi ng t hese assunptions the amount of foliage that results in
t he observed changes in cover can be cal cul ated, using an equation
derived fromthe Poi sson distribution:

FHP(h) = -1 n(1l-cover(h)) [Eq. 2],
where FHP(h) is the cumul ative one-sided | eaf surface area (or
LAI, Leaf Area Index), expressed as a fraction of projected ground
area, above height h, and cover(h) is the fraction of sky not
covered by foliage, above height h. The actual FHP is cal cul ated
from FHP(h) by calculating the additional LAl at each height
interval, with respect to that above it. The theory behind the
original application of this technique is found in MacArthur and
Horn (1969), and a validation of the method is presented in Aber
(1979) .

The FHP is the distribution of foliage surface area as a
function of canopy height, fromthe ground to the top of the
canopy. In contrast, the canopy height profile (CHP) is the
surface area of all canopy nmaterial, foliar and woody, as a
function of height. Conbining foliar and non-foliar materials was
necessary so that field and renotely sensed canopy height profiles
coul d be conpared. This is because the single-wavel ength SLI CER
system cannot di stingui sh between various sources (bark, foliage,
soil) of backscattered illum nation. In order to neasure the CHP
inthe field, the distribution of the height to the first
i ntersection of any canopy structure type is recorded, rather than
only intersections of foliage. Either canopy or foliage height

profiles can be calculated as relative, (with the total vector
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scaled to one) or absolute (with the total vector scaled to the
total leaf or plant area index of the canopy). In this work

rel ati ve canopy height profiles are used excl usively.

2.2.3 Stemmap Dat aset

The stenmmap dat aset conbi nes field observations of forest
stand structure with coincident renotely-sensed observations of
canopy structure. The neasurenents of basal area and bi omass for
this dataset cane froman existing 32 ha stand at SERC i n whi ch
every stemgreater than 20 cm dbh has been mapped. The SLI CER
instrunent was flown over the stand in Septenber of 1995, in a
five-beam cross-track configuration. The SLICER footprints were
geor ef erenced by conbining the ranging data with | aser pointing
and aircraft position data, obtained by a Inertial Navigation
System and a kinematic d obal Position Systemtrajectory,
respectively. The stemmap and SLI CER transects were then
registered to a digital orthophoto quadrangl e (Maryland DNR
1991), which was re-projected to the UTM projection (Figure 1a).

The stemmap was geol ocated by matching the roads as recorded on

the photo to the areas without trees within the stemmap, which are

associ ated with the roads. After conversion of the georeferenced

SLICER data to the UTM proj ection, a systematic offset of unknown

source was noted between forest edges in the orthophoto and as

expressed by the SLICER canopy height profile. In order to ensure

proper registration between the stenmap and the SLI CER footprints,
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the SLICER data was translated to natch forest edges in the
ort hophotos. On this basis, the error in the relative positions of
the stemmap and SLI CER transects shoul d be reduced to | ess than
15m

To cal cul ate basal area and biomass fromthe stemap dat aset,
t he geo-referenced tree and SLI CER wavef orm data were processed
using progranms witten in IDL (Interactive Data Language, Research
Systens Inc, Boul der Col orado). For this study, the transect of
renotely sensed data was five |laser footprints wide, with each
footprint nomnally 10 neters in dianmeter, and nom nally spaced at
10 neter intervals in along- and cross-track di nensions. Data from
the two outer footprint positions in the transect were di scarded
due to anonal ous hei ght neasurenents. The anomal ous hei ght
nmeasurenments are thought to be due to | ow instrunent signal-to-
noi se caused by m salignnent between the footprint crosstrack scan
pattern and the outer edges of the instrunents receiver field-of-
view. Three by three bl ocks of SLICER footprints were sel ected
fromthe central three of the five cross track footprints (See
Figure 1b); each 3 x 3 block was considered to be a single plot.
O a possible 104 sanples within the vicinity of the stem mapped
stand, 75 were selected for analysis. The remaining plots were
elimnated due to their proximty to either the edge of the stem
mapped area, a clearing, or roads within the stand, because they
over | apped with other plots, or were in the vicinity of an

instrumented tower within the stenmmap.
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A mask was generated for each 3 x 3 block of SLICER wavef orns
(Figure 1b), to determne which stens fell within the area sensed
by the instrunent. The mask was fit to the outernost positions of
the four corner waveforns, which were cal cul ated as occurring 7.07
mfromthe center point of each corner waveform Al stens within
the mask were extracted and the total basal area and bi omass (as
cal cul ated using Eq 1) of those stens was divided by the area of
the mask, in hectares(See Figure 1b).

Canopy height profiles for each plot in the stemmap dat aset
were cal cul ated using the plot’s 9 SLICER waveforns. Validation of
the SLI CER system and the processing software’s ability to
renotely sense canopy height profiles can be found in Lefsky
(1997). Briefly, we hypothesized that the power of the
backscattered laser illumnation is subject to the same process of
occl usi on observed in the field neasurenents of height to first
intersection, and nodified the MacArt hur-Horn nethod to apply this
approach to the SLICER return energy waveforns. The nost critica
step in the nodification of the MacArthur-Horn routine was the
separation of the portion of the waveformreturned fromthe ground
surface fromthe bal ance of the waveform (Figure 2a). The ratio of
the power of the “ground return” to the total signal power is
i nversely proportional to the total canopy cover, but to estinmate
canopy cover, the ratio nust be adjusted to account for
di fferences in ground and canopy refl ectance at 1064nm W did
this by assumng that the ratio of canopy and ground refl ectance

is approximately 2:1. The total horizontal canopy cover at each
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hei ght increment can then be cal cul ated, which allows the use of

t he MacArthur-Horn equation (Figure 2b). The processing that

i npl enents this algorithmwas tested using four dissimlar stands
at SERC. A two-sanple, uneven sanple size, Chi-square goodness- of -
fit analysis was perforned to determne if there were
statistically significant differences between field and SLI CER
derived canopy height profiles. The canopy height profiles
nmeasured in the field and from SLICER were statistically

i ndi stinguishable (Lefsky 1997). In this work, an interactive
version of the waveform processing al gorithmwas used to inprove

the identification of the position of the ground return.

2.2.4 Conparison of Stemmap and Chr onoseqguence Stand Structure

Attributes

Stand structure attributes for the chronosequence dat aset
were neasured considering all stens greater than 2 cm The
stemmap, in contrast, was mapped using a mni numdi aneter of 20
cm To allow conparison of the attributes measured using the 20 cm
and 2 cmlimts, we generated a set of 20 cmlimt structure
attributes for the chronosequence dataset, so that we had both 2
and 20 cmlimt stand structure attributes for that dataset. Using
this data, we estimate that stens between 2 and 20 cm DBH account
for 13%of total basal area, and 8% of aboveground bi onass.
Regressions with the 20 cmstructure attributes as independent

variables, and the 2 cmstructure attributes as dependent
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vari abl es was perforned. The resulting regression equations were
then evaluated for their suitability in estimating 2 cmlimt
basal area and biomass fromthe 20 cmlimt data; ie., to
determine if there was variability in the 2 cmlimt measurenents
that was not explained by the 20 cmlimt measurenents,
specifically in the range of conditions over which we want to

apply these equati ons.

2.3 Canopy Hei ght Indices

To relate the field and renotel y-sensed canopy height profile
nmeasurenents to the stand structure attributes, we reduced the
vector information in the CHP to four height indices. W chose to
use the follow ng height indices: maxi num canopy hei ght, mean
canopy hei ght, nedi an canopy height, and QMCH 1In this discussion,
t he canopy height profile is treated as a vector of one neter high
elements, with the value for each el enment equal to the fraction of
the total profile in the height range of that el enent. For
exanple, the first element in the CHP vector represents the
fraction of total canopy surface area between 0 and 1 neters above
t he ground.

Maxi mum canopy height is cal culated as the height of the
hi ghest canopy height profile el enent that has a val ue greater
than zero. Medi an canopy height is calculated as the height of the
hi ghest el enent bel ow which no nore than 50% of the total canopy

hei ght profile is distributed. Mean canopy height is cal cul ated as

16



the summation of the product of the canopy height profile and the

hei ght of each el enment. The QVCH i s defined as:

QMCH:\;‘ ZCHP[l]*l [Eq 2],

where CHP[i] is the fraction of total foliage at height “I”.

Regr essi ons between coi ncident field and SLI CER neasurenents
of the maxi nrum nedian and quadratic mean canopy hei ght have
previ ously been perforned using a dataset of 12 plots in two
eastern deci duous forests, as described in Lefsky (1997), where
each of the plots had both field and SLI CER neasurenents of canopy
structure. Anmong the twelve plots were four fromthe
chronosequence dataset. Analysis at that time indicated that
SLI CER- measur ed i ndi ces of height were closely correlated with
those neasured in the field (field vs. SLICER hei ght, R*=76%
medi an hei ght, R=68% quadratic nmean canopy hei ght, R=78% e.g.
Figure 3). In that work, a positive bias was noted in the
equations relating the SLI CER neasurenent of height indices to
field neasurenents. Subsequent re-anal ysis of that dataset
i ndicates that intercepts of those equations are not significantly
different fromzero, and their slopes are not significantly
different from1.0. Therefore, no corrections were applied to the
SLI CER neasured indices of canopy structure in the current work.
To eval uate the rel ationshi ps anong the four height indices, we

2

pl otted t hem agai nst each other and cal cul ated their r“ val ues,

using data fromthe chronosequence dataset.
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2.4 Linear Regression
Li near regression was used to devel op equations rel ating
hei ght indices to basal area and bi omass ((Chjective 1). Four
equati ons were devel oped for both basal area and aboveground
bi omass, one using each of the four height indices, for a total of
ei ght equations. Data for the devel opnent of the equations cane
fromthe chronosequence dataset, which has fiel d-neasured hei ght
i ndi ces. Regression between the height indices and aboveground
bi omass indicated that there was a consistent, positive
correl ati on between the independent val ues and the variance of the
residual s, and therefore aboveground bi omass val ues were
transformed using a square-root. To assess the relative
expl anat ory power of each height index, the r? between each hei ght
i ndex and both stand structure attributes in the chronosequence
dat aset was cal cul ated, as well as the standard deviation of the
residual s. For the square-root transformed aboveground bi onass,
the r?reported is for the transfornmed variable, all other
statistics were cal cul ated using the back-transformed predictions.
The resulting equations were then applied to the SLI CER
nmeasur ed hei ght indices fromeach plot of the stemap dataset
(Chjective 2), to produce predicted stand structure attributes for
that dataset. The applicability of the regression equations to the
stemmap dat aset was evaluated in two ways. For each equation we
cal cul ated the residual between the predicted and observed

(stemmap) stand structure attributes, and the residuals’ mean and
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standard deviation. A final check on the applicability of the
chronosequence derived equations to the stemmap data was perforned
usi ng regression between the values predicted for the stemap
pl ots using each of the equations, and those observed in the
stemmap dataset. The coefficients of these regressions were then
tested to determne if they differed significantly fromthose
expected if the actual relationship was the identity equation:
Predicted = B, + B, * (bserved,
where B,=0 and B,=1. Prelimnary results indicated that the r?
val ues between the predicted and observed stand attributes for the
stemmap dataset were snaller than those which were obtained for
t he regressi ons between the height indices and stand attributes
made using the chronosequence dataset. One difference between the
two datasets is the narrower range of conditions, of both stand
attributes and height indices, in the stemmap dataset. In order to
determine if this was a factor in the | ower r?values, correlation
coefficients between each of height indices and each of the stand
attributes were calcul ated, for four datasets. These datasets
were: all plots fromthe chronosequence dataset, al
chronosequence plots less than 30 neters tall, all chronosequence
plots greater than or equal to 30 neters tall, and all stenmap
plots greater than or equal to 30 nmeters, which included all the

stemmap plots.

2.5 Stepwi se nultiple regression

19



Stepwi se multiple regression has been proposed as a nethod to
predi ct basal area and stemvolunme fromvertical canopy profile
nmeasurenments (Hyyppa and Pul liai nen, 1994). Stepw se nultiple
regressions were performed to check if nore variance in the stand
structure attributes was explained by |inear conbinations of the
canopy height profile elenments than by the indices derived from
it. These regressions were conducted using the el enents of the
canopy height profile, aggregated to 11 four-mnmeter resolution
bi ns, as the independent variabl es. For exanple, the first
i ndependent variable was the fraction of the CHP between 0 and 3

net ers above the ground.
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3.0 RESULTS
3.1 Overview

Regressi on anal ysis between 20 cmand 2 cmstand attri butes
i ndi cated that basal area and aboveground bi onmass measurenents
made using the 20 cmlimt could accurately predict 2 cm
attributes (Figure 4a & 4b). Therefore, stand structure attributes
for the plots fromthe stemap dataset, which had been neasured
using a 20 cmlimt, were transforned using the resulting
regressi on equations, so that they could be conpared directly to
attributes fromplots in the chronosequence dataset. Hei ght
i ndices cal culated fromeach plot’s CHP were highly correl ated
wi th each ot her, but nmaxi mum canopy hei ght was | east well
correlated with the other indices (Figure 5). H gh correl ations
between all of the height indices and both stand structure
attributes were observed as results of the regression analysis
using data fromthe chronosequence dataset (Figure 6). W then
calculated estimated stand attributes for the stemmap dat aset,
using the equations fromthis chronosequence regression anal ysis
and hei ght indices fromthe stemmap dataset (Figure 6). Wile
correlation coefficients between the observed and t hese new
predicted estinmates of stand attributes were | ower than the
correl ation coefficients obtai ned when devel opi ng the ori gi nal
equations, other measures of the predictive power of these
equations, such as the standard deviation of residuals, were
simlar (Tables 2,3). The QVCH i ndex was found to be the nost

reliable predictor of basal area and bi omass when results fromthe
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stemmap and chronosequence datasets were consi dered. Equations
devel oped using stepw se nultiple regressions explained as much
variance as those resulting fromsinple regression using the

hei ght indices, but their predictions of the stand attri butes of

the stenmap plots were not as accurate.

3.2 Prediction of 2 cm Stand Structure Attributes from20 cm Stand
Structure Attributes
Usi ng the chronosequence dataset, strong linear relationships
were found between basal area and bi onass neasured with the 2 cm
[imt and the sane attributes neasured with the 20 cmlimt. For
bot h basal area and aboveground bi onmass (Fi gure 4a&b) the
rel ati onshi ps consist of a range of |ow values in which the two
vari abl es are weakly correlated, and a range of higher values in
whi ch the two variables are very strongly related. The range of
val ues found for each stand attribute fromthe stemmap data (as
nmeasured using the 20 cmlimt) are indicated on the graphs, and
i ndi cate the range over which we want to use the relationship.
Wthin the range of stand structure attributes observed in the
stemmap dataset, the relationship between then 2 and 20 cmlimt
i ndices remains highly correlated and |inear. Regression equations
for each attribute were devel oped using only the data that fel
within the range where the rel ationship between the 20 cmand 2 cm
nmeasurenments were well correl ated. The equations devel oped are:
Basal Area, = 12.503 + 0.809 * Basal,, r2=93% P<0.0001, and,
Bi omass,=38. 016 + 0.934 * Bi omass,, r2=99% P<0.0001.
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These equati ons have been used to estimate 2 cmlimt stand
structure attributes for the stemmap plots. Al subsequent

anal yses are for 2 cmlimt attributes.

3.3 Rel ationshi ps Arong Canopy Hei ght | ndices

H gh levels of correlation were found between each of the four
canopy height indices, as illustrated in Figure 5, but there was
sone variability . Maxi mum canopy hei ght has the | onest
correlation to the other variables, especially for taller stands.
Medi an canopy height is highly correlated to the two nean hei ght
i ndi ces. The two mean hei ght indices, the nmean canopy hei ght and

the QMCH, are the nost highly correlated of the variabl es.

3.4 Relationship of Canopy Height Indices to Basal Area and

Bi ormass
For the chronosequence dataset, all four height indices

considered in this work were highly correlated with both basal
area and aboveground bi omass, with r? val ues between 60% and 80%
(Table 2a). In all cases, the correlation between the hei ght

i ndi ces and aboveground bi omass was hi gher than the correspondi ng
correl ati on between the height indices and basal area. The
standard devi ations of the residuals resulting fromeach
regression are | owest when the r? values are highest. O the four
equations predicting basal area, the QVCH has the | argest r?val ue
and the snall est standard deviation of residuals. O the four

equati ons predicting aboveground bi omass, maxi num canopy hei ght



and the QVCH bot h expl ai n 80% of variance, but maxi mum canopy
hei ght has a smaller standard devi ation of residuals. The absol ute
differences in these two indicators (r? and the standard devi ation
of residual s) between the height indices are snmall in magnitude,
and the differences in r? are non-significant statistically.

The ability of each of the regression equations to predict
t he basal area and biomass of plots in the stenmap dataset was
eval uated in several ways. Scatterplots of predicted and observed
basal area and biomass are presented in Figure 6. For each stand
attribute, the two best equations were selected for inclusion in
Figure 6 on the basis of the goodness-of-fit statistics presented
in Table 2. Exam nation of the figures indicate that the
variability of the stemmap dataset plots is simlar to that of the
chronosequence dataset. However, the r? val ues of the predicted vs
observed regression equations are much | ower than those of the
regressi on equations predicting stand attri butes from hei ght
indices. This result must be viewed within the context of the
wi der range of conditions observed in the chronosequence plots.
For a constant nunber of data-points distributed around a |inear
relationship with a specified standard devi ati on, the anount of
vari ance explained by the Iinear relationship declines with
decreasi ng range of the independent variable.

This effect is denonstrated by Table 3, which docunents the
coefficients of determ nation between each of height indices and
the two stand structure attributes for the four dataset defined in

t he net hods. The high determ nation coefficients obtained using
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the entire chronosequence dataset are maintained in the subset of
plots shorter than 30mtall. In every case but one (QMCH and
Basal Area), determ nation coefficients drop when chronosequence
plots equal to or taller than 30m are considered. Wen these
determ nation coefficients are conpared to those cal cul ated using
the stenmap dataset differences still exist, but they are much
smal |l er than the differences obtai ned when the stemmap plots are

conpared to the total chronosequence dataset.

Anot her index of the strength of the relationships include
t he mean and standard deviation of residuals. The nean residual
indicates the total accuracy of all the predictions nade with an
equation, while the standard devi ation of residuals indicates the
ability of each equation to predict individual values. The mean
residual values for the basal area equations resulted in a error
between -9.9 and 7.2 nf*ha', or between -25 % and +19 % of the
nmean basal area for the stemmap plots. The nean residual val ues
for the aboveground bi onass equations resulted in a error between
-130.1 and 80.2 My*ha', or between -34 % and 21 % of the nmean
bi omass for the stenmap plots. O the four equations predicting
basal area and bi omass, nean canopy hei ght and the QVCH have the
nmean residual values with the | owest magnitudes.

The standard devi ation of residual values for the basal area
equations ranged between 4.4 and 6.5 nf*ha!, and were in each case
| ower than those observed in the original regressions. A though

the differences between the equations are snall in nagnitude, they
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do represent neani ngful differences when conpared to the standard
devi ati on of the dependent variable, basal area, which is 5.5
nf*ha!. The equation that uses the nedian canopy hei ght has
residual s who standard deviation is larger that 5.5 nf*ha?, due to
its extrenmely poor fit. The reduction of the standard deviation
from5.5 to 5.3 nf*ha' represents a 7 %reduction in variance,
while the reduction from5.5 to 4.4 represents a 37% reducti on.
Simlarly, the standard devi ation of the stenmap bi onass val ues is
56.4 My*ha'. The equations using maxi rum and nedi an canopy hei ght
have residuals who standard deviation is larger than 56.4 Mg*ha',
al so due to their poor fit. The reduction of the standard

devi ation of bionmass residuals from56.4 to 50.9 My*ha ' represents
a 20%reduction in variance, while the reduction of the standard
deviation fromb56.4 to 46.7 My*ha'represents a 33 %reduction in
variance. O the four equations predicting basal area, the QVCH
and the mean canopy hei ght had the | owest standard devi ati on of
residuals. The QMCH and t he mean canopy hei ght al so had t he | owest
standard devi ation of residuals of the four equations predicting
abovegr ound bi omass.

O the predicted vs. observed regression for the four
equations predicting basal area, both the maxi num and nedi an
canopy height had a slope and intercept significantly different
from1l and O, respectively. The other equations had non-
significant p-values of simlar magnitude. O the four equations

predi cting bi omass, the equations using maxi num nedi an and mean
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canopy height had either one or both coefficients that were

significantly different fromthose expected.

3.5 Stepwise Miltiple Regression

Results fromthe stepwi se multiple regression analysis are
presented in Table 2B. The equations predicting basal area and
bi omass nake their predictions fromthe same three variables, the
fraction of the total profile between 16 and 20 neters above the
ground, between 28 and 32 neters above the ground, and between 36
and 40 neters above the ground. The three slope coefficients
appear to increase exponentially as a function of height. The
equation predicting basal area explains nearly as much variance as
the nost correl ated hei ght index (69%vs. 70%for the QMCH), and
has a | ower standard deviation of residuals then any hei ght index
(7.7 vs. 7.8 nt*ha*for QUCH). The equation predicting aboveground
bi omass explains slightly nore variance than as the nost
correl ated height indices (81%vs. 80% for naxi mum canopy hei ght
and QMCH), and al so has a | ower standard devi ation of residuals
then any height index (61.4 vs. 75.4 My*ha').

The equations derived fromthe stepwi se nultiple regression
were then applied to the stenmap dataset (Table 2B). Both
equations have residual statistics that were near the best of the
hei ght i ndex equations. The predicted vs. observed regressions for
bot h basal area and biomass had intercepts that were significantly

different fromwhat woul d be expected, assuming the identity

27



relationship (See Figure 6), and the equation predicting basal

area had a slope that was also significantly different.

4.0 D SCUSSI ON

4.1 Rel ationship of Canopy Height Indices to Basal Area and
Bi onmass

The devel opnent of equations relating height indices to basal
area and biomass indicated that, although there were sone
differences in the predictive ability of the height indices, those
differences were small, and statistically non-significant.
Nevert hel ess, the canopy structure informati on summari zed in the
medi an, nean, and quadratic nmean canopy height indices did inprove
their estimates of stand basal area, albeit non-significantly,
relative to the maxi num canopy hei ght. Maxi mum canopy hei ght was
as good or better than the other variables at predicting
aboveground biomass. This reflects a difference in what the two
attributes (basal area and biomass) represent, and in how they are
cal cul ated. Basal area, as the name suggests, is a two-dinensiona
measur enment, and increases, on a per stembasis, as a function of
DBH squared. Biomass is three-dinensional, the product of wood
density and stemvol une, and stemvolune is a function of the
product of stem basal area and height. This nmeans that, on a per
stem basi s, biomass nust increase as a function of DBH to a power
greater than 2, as in Eq. 1. In practice, this neans that, as a

function of stemdianeter, stem bi omass increases nore steeply
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than stem basal area. As an exanple, the ratio of the basal areas
of stens 95 cmand 2 cmin dianeter is 2060:1, while the ratio of
t he bi omass of those two stens is 16000: 1, an eight-fold increase.
As a result, the relative contribution of large stens to
aboveground bionmass is greater than their relative contribution to
basal area. Height indices that nostly reflect the height of the

| argest trees in a stand, such as maxi num canopy hei ght and t he
QVCH, shoul d be nost highly correlated with bi omass. Conversely,
basal area is nore sensitive to the nunber and size of snaller
stens. Indices which take into account the average position of
foliage, such as the nedian, nean and quadratic nean canopy

hei ght, should be nore highly correlated with basal area. This is
because these indices represent the average height of all trees,
not just the |argest ones. The QVCH i ndex i ncludes information
about the distribution of tree heights, unlike maxi mum canopy

hei ght, but weights the inportance of the taller tree heights,
unl i ke mean or nedi an canopy height. This may explain why it is
highly correlated with both stand structure attributes. The
relative contribution of large stens to bi omass and basal area may
al so explain why the correlation coefficients between the hei ght

i ndi ces and bi omass are |arger than the correl ati ons between the

hei ght indi ces and basal area.

The quadratic mean canopy height is an index devel oped during
the course of this work, and has no literature supporting it. Its

devel opnent was suggested by the quadratic nean dianeter used in

29



forest nensuration-- the dianmeter of the tree with the average
basal area. The QMCH, as defined earlier (Eq. 3), is the square
root of the summation of the product of the canopy height profile
and each el enment’s squared height. N klas (1994) reports that for
a dataset of angi osperm “chanpion” trees, the relationship between
tree height and dianeter is

H = 19.100- 474
transformng to predict diameter results in

D= (H19.1)2 1,

Note the simlarity of the exponent of the transfornmed
equation to the square power used to weight the el enents of the
canopy height profile, and the simlarity of the exponent of the
first equation to the square root used to transformthe wei ghted
canopy height profile (Eq 3). This suggests the canopy hei ght
profile is being weighted by a factor that is proportional to the
di ameter required to support it, and conversely its average is
transfornmed, by the square root, to a variable that is
proportional to height.

The application of regression equations, devel oped using the
chronosequence dataset, to the stemap dataset indicated that
there were relevant differences in the equations suitability. The
QVCH and nmean canopy hei ght were the best predictors of basal area
for plots in the stemmap, but the QMCH is nmarginally superior in
all but one aspect (mean residual) of regression quality. For the

predi ction of biomass, the QMCH and naxi mum canopy hei ght are very
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simlar in ternms of regression quality, but when applied to the
stemmap data the equation using nean canopy hei ght has a hi gher
standard devi ation of residuals, and the slope and intercept of

t he predicted-vs.-observed regression |ine for the nean canopy
height is significantly different fromthe identity line. Wile
the r? values associated with the stemmap dataset were |ower than
t hose associated with the chronosequence dataset, this is due to
differences in the range of conditions found in each dataset, not
the strength of relationships relating height indices to stand

structure attri butes.

4.2 Stepwi se Multiple Regression

The objective of the stepwi se nmultiple regression analysis
was to see if the individual elenments of the canopy height profile
could inprove the predictions of stand structure attributes, as
conpared with sinple regressions using height indices. The
stepwi se multiple regressions explained as nuch variance as |inear
regression with canopy height indices, but the resulting equations
were |less applicable to the stemmap dataset than the best height
i ndex, the QMCH Working with a dataset of canopy height profiles
for two sites with differing conposition, Lefsky (1997) suggests
that the height index approach is qualitatively preferable,
because it is probably |less site specific than predictions nmade
directly fromthe canopy height profile. That the percentage of

vari ance expl ai ned by each approach is simlar is indicative that
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t he hei ght index approach is probably explaining as nmuch variance

as can be expl ai ned.

4.3 Height | ndex Approach

The hei ght index approach used in this work is simlar to
that previously used in the analysis of first-return |aser
altineters. Many approaches to the analysis of that data have
foll owed the work of MacLean (1982), who showed that the area
between a line follow ng the hei ght of the canopy, and anot her
follow ng the ground surface, is closely and linearly related to
the natural |ogarithmof stand volune. The area between these two
| i nes measures the average hei ght of the upper surface of the
canopy. Large footprint surface |idar systens, such as the one
used in this paper, do not provide a high resolution record of
thi s measurenent. However, within the large footprint waveform
the distribution of vertical surfaces is recorded. A weighted
hei ght index perforns the same function as the canopy hei ght
trace-- except that it integrates the height distribution of the
entire canopy, not just it’s outer surface, as in Naesset (1997a).
The canopy height profile transformation further serves to correct
the vertical distribution of returned power to reflect the power
avai lable for return fromthe canopy at each successive |evel
t hrough the canopy. The fact that a height index (the QVCH) that
is weighted towards the top of the canopy does better than one
that isn’'t suggests that the height of the upper canopy surface

may still be an inportant index for predicting stand attri butes.
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The val ue of the coefficient of determ nation between the
stand structure attributes and height indices for both datasets
are consistent with those reported in the laser altimetry
literature (Maclean 1982, Nelson et al. 1988a, Nelson et al.
1988b, N Isson 1996, Hyyppa and Hal | i kai nen 1996, Naesset 1997a).
A determ nation coefficient (r?) of 61 %has been reported for the
predi ction of basal area (Hyyppa and Hal |l i kai nen 1996), while
val ues between 53 % and 92 % have been reported for the prediction
of stemvolune and bi omass. W cal cul ated an adjusted r? of 70 %
for basal area and an adjusted r?of 80 % of bionmass for the
chronosequence generated regression equations. Wile these
equati ons were devel oped using field estimates of canopy
structure, we have shown that they are applicable to the
prediction of stand structure attributes from canopy hei ght
i ndi ces neasured using the SLICER scanning lidar system Wile the
r? values of the predictions of basal area and bi omass of plots
fromthe stemmap dataset were | ower than those obtained with the
chronosequence dataset, the standard deviation of the residuals
for both datasets are nearly equal. The higher r? values for
equati ons devel oped with the chronosequence data reflects its
wi der and nore uniformdistribution of conditions.

W have seen that the regressions relating the field neasured
QVCH i ndex to basal area and bionass are applicable to renotely
sensed hei ght indices, for the range of stand conditions observed
in the stemmap dataset. Can this conclusion be applied to the

whol e range of conditions found in the chronosequence dataset? |f
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the error in the renotely sensed QVCH estimate i s constant

t hr oughout the range of canopy structure conditions, we can. At
present, no direct evidence is available to answer this question.
Sone steps in the processing of the raw waveform data, such as the
del i neation of the ground return, could tend to introduce a
constant error into the estinmates of the canopy height profile,
which will have an |arger proportional effect on shorter stands,
but such an effect has not yet been identified. If the ability to
renotely sense the canopy height profile is constant, it is

| ogical to conclude that the overall strength and the coefficients
of the relationship between renotely-sensed height and fiel d-
col l ected stand structure attributes is the same as that found

bet ween opti cal -quadrat nethod hei ght indices and stand structure
i ndi ces.

When considered along with the results of Lefsky (1997) which
concl udes that field and SLI CER sensed canopy height profiles were
statistically indistinguishable, this work supports the prem se
that SLICER and field collected profiles are directly conparabl e.
| f the success in validating SLICER is extended to other forest
types, it would provide an unprecedented |evel of flexibility in
devel opi ng renote sensing applications using surface |idar
t echni ques. Wereas conventional optical and radar renote sensing
platforms do not have conveniently neasured field anal ogues for
their neasurenents, existing relationshi ps between naxi mum canopy
hei ght and forest ecosystem structure and function can be applied

directly to surface lidar renote sensing. For those forest types



where the MacArt hur-Horn techni que can be applied, field estinates
of the canopy height profile can offer “proof of concept” support
to new anal yses, without the difficulty of obtaining |aser
altinetry and geo-locating the laser footprints in the field,

al t hough the 15 merror in footprint position did not seemto
overly effect this current work. Current work to establish a |aser
altinetry profile neasurenent capability for use in the field wll

i ncrease the desirability of this approach.

5. 0 CONCLUSI ONS

| ndi ces nmeasuring the vertical distribution of canopy
structure are highly correlated with stand basal area and
aboveground bi omass. Rel ati onshi ps devel oped using field neasured
canopy height profiles were found to be applicable, in varying
degrees, to renotely sensed canopy height profiles. The quadratic
mean canopy hei ght (QMCH) was the hei ght index which was both
highly correlated to both basal area and aboveground bi omass, and
had the best overall predictions of the stand attributes of the
renotely sensed dataset. W find that reasonabl e because the QVCH
is a weighted average of the canopy height profile, where the
wei ghts are proportional to the amount of woody structure required
to support foliage at each height. Stepwi se multiple regression of
basal area and bi omass using the canopy height profile vector as

i ndependent variables did increase the power of the field-neasured
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regressi on equations, but were not as applicable to the renotely
sensed dataset as was the QWVCH.
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FI GURE LEGENDS

1. A Illustration of the SLICER footprints overlain on the SERC

stemmap, and B), detail of the sanpling geonetry.

2. Steps in the transformation of the |idar waveforminto an
estimate of the vertical distribution of canopy surface area, the

canopy height profile.

3. Regressions between field and SLI CER neasured quadrati c mean
canopy height (QMCH) from Lefsky (1997). Field QUWCH = 2.002 +
0.798 * SLICER QVCH, R=0.78.

4 A) Conparison of basal area neasured using a 2 and 20 cm

mnimumDBH limt calculated with data fromthe chronosequence
dat aset, and the observed range of basal areas (calculated with
the 20 cmmnimumDBH limt) in the stemmap dataset, and B) the

sane for aboveground bi onass.

5. Scatterplots conparing each of the four height indices fromthe

chronosequence dataset to each other. N=48.

6. Scatterplots of predicted vs. observed basal area (a-c) and
bi omass (d-f), for the chronosequence and stemmap datasets, as
predicted fromthe two best hei ght index regression equations, and

by stepwi se multiple regression. Dashed |line indicates the
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identity line, solid line indicates the predicted vs.

regression for the stenmap dat aset.

obser ved
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Table 1. Stand attributes for the chronosequence

and st emap

dat aset s.
Dat aset : Chr onosequence St enmap
Stem Data Source Forty-eight plot 75 plots

observati ons.

subsetted froma
32 ha stemap.

Canopy Height Profile Source Opti cal quadr at SLI CER wavef or ns
net hod.
Nunber of Plots 48 75
Mean Basal Area(nf*ha') 36.1 37.5'
Mean Aboveground Bi onass 235.9 239. 0!
(My*ha'")
Maxi mum Canopy Hei ght (m
Maxi mum 40.0 44. 0
Mean 26.5 36. 2
M ni num 4.0 30.0
Mean QVCH () 14. 4 18.1
Notes: 1) Basal area and Aboveground Bi omass reported for the

stemmap dataset are for predicted 2 cmstand structure attributes.

43



Tabl e 2. Regression equations for linear(A) and stepwi se rnultiple regressions(B)
Colums 1 through 4 record the name of the dependent variable, the regression
equation for each height index, and the r? and standard devi ation of residuals for
equati ons devel oped using data fromthe chronosequence dataset (n=48). Colums 5
and 6 record the mean and standard deviation of residuals which result fromthe
appl i cation of each equation to height indices fromthe stenmap dataset (n=75).
Columms 7 through 9 record the r? and coefficients of regression between

predi cted and observed basal area and bi omass fromthe stemmap dataset, and the
significance of the difference between the observed “predicted-observed’

regression, and identity.
A. Results of linear regressions
Oiginal Regressions using field data Application of Regressions to Stemmap Data
from the Chronosequence dataset(n=48) (n=75)
Predicted vs. Observed
Residual Statistics Val ues for the Stemmap
Dat aset
(Observed=B,+B,Predi ct ed)
Stdev*’
Dependent of Mean St dev?! of B, B,
Vari abl e Equati on r? Resi d. Resi dual Resi dual s r? P( B,=0) P(b,=1)
Basal Area 7.84 + 1.07 * Maximum 60% 8.9 -9.9 5.3 16% 9.3 0. 60
(m2/ Ha) Canopy Hei ght p<0. 0001 p=0. 02 p<0. 0001
9.80 + 2.13 * Median 66% 8.3 7.2 6.5 3% 31.2 0. 22
Canopy Hei ght p<0. 0001 p<0. 0001 p<0.0001
6.34 + 2.30 * Mean Canopy 65% 8.3 1.9 4.7 28% 3.4 0. 96
Hei ght p<0. 0001 p=0. 36 p=0. 68
6.05 + 2.08 * QVCH 70% 7.8 -2.1 4.4 37% -4.8 1.1
p<0. 0001 p=0. 17 p=0. 47
Bi onass (2.77 + 0.44 * Maxi mum 80% 73.9 -130.1 62.1 20% 87.8 0.41
(My/ Ha) Canopy Hei ght)? p<0. 0001 p=0. 001 p<0. 0001
(4.78 + 0.79 * Median 70% 91.6 80.2 68.1 0% 220.7 0.12
Canopy Hei ght)? p<0. 0001 p<0. 0001 p<0.0001
(3.16 + 0.88 * Mean 73% 89.0 28.4 50.8 21% 80.8 0.75
Canopy Hei ght)? p<0. 0001 p=0. 002 p=0. 019
(2.90 + 0.80 * QWCH)? 80% 75.1 -16.5 46. 7 33% 28.1 0.83
p<0. 0001 p=0. 22 p=0. 07
1. Stdev = Standard Deviation
B. Results of Stepwise Miltiple Regression
Oiginal Regressions using field data
from the Chronosequence dataset (n=48) Application of Regressions to Stemmap Data
(n=75)
Predicted vs. Cbserved
Resi dual Statistics Values for the Stemap
Dat aset
(Observed=B,+B,Predi ct ed)
Dependent St dev'o Mean Stdev® of B, B,
Vari abl e Equati on r2 f Resi dual Resi dual s r2 P( B,=0) P(b,=1)
Resi du
al
21.5+( 49. 1*CHP[ 16: 20]) 69% 7.7 6.0 4.5 35% 10.6 0. 854
Basal Area +(156. 2* CHP[ 28: 32] ) p<0. 0001 p=0.004  p=0.123
(m2/ Ha) +(244. 8% CHP[ 36: 40] )
91. 1+( 403. 2*CHP[ 16: 20] ) 81% 61.4 50. 2 45. 8 36% 86. 3 0.81
Bi onass +(1597. 0* CHP[ 28: 32] ) p<0. 0001 p<0.0001  p=0.004
(My/ Ha) +(4109. 8* CHP[ 36: 40] )




Tabl e 3. Conparison of coefficients of determnation for four

datasets; all chronosequence plots, chronosequence plots |ess than
30 mtall, chronosequence plots greater than or equal to 30 m
tall, and all stemmap plots greater than or equal to 30 mtall.
Canopy height is abbreviated by CH.
Dependent I ndependent Chr ono- Chr ono- Chr ono- St emmap
Vari abl e Vari abl e sequence sequence sequence
Al Plots Plots < 30m|Plots => 30mPl ots =>30m
Basal Area Maxi mum CH 60% 47% 24% 16%
Medi an CH 66% 44% 40% 3%
Mean CH 65% 40% 35% 28%
QVCH 70% 44% 46% 37%
Bi omass Maxi num CH 80% 72% 39% 20%
Medi an CH 70% 67% 18% 0%
Mean CH 73% 63% 15% 21%
QVCH 80% 69% 29% 33%
Number of 48 24 24 75
Pl ot s
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A. Ground Return Processing
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1. The first step in processing the lidar
waveform is the identification of the
peak of the ground return, which is
assumed to be the mean elevation of the
forest floor.
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2. The posterior half of the ground 3. The posterior half of the ground
return is defined as the total signal  return is copied and flipped vertically
between peak and height at which theo define the anterior half of the ground
power of the signal falls below return. Power greater than the level
background noise. established by the ground return is
assumed to be understory canopy.

beginning of
ground return
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‘\ end of ground
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B. Canopy Height Profile Calculation
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1. After the ground return is delineated from the remainder of the waveform the fraction
of total power returned from the canopy can be calculated. Canopy cover can then be
estimated by correcting the canopy power for the relative reflectivities of foliage and

2. The cumulative cover fraction can then be
transformed using the MacArthur-Horn (1969)



N O 00 © < (N O
N N d d d «d <

(W) HOWO painsesw plal4

12 14 16 18 20 22 24

10

SLICER measured QMCH (m)



Basal area (@Tha‘l) calculated
with 2 cm minimum DBH limit

Biomass (Mg*hal) calculated
with 2 cm minimum DBH limit
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